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Equivariant homotopy theory: spaces

Let G be a finite group and let X be a topological space with G-action.

Question: What is the "homotopy type” of X7
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Equivariant homotopy theory: spaces

Let G be a finite group and let X be a topological space with G-action.
Question: What is the "homotopy type” of X7

In the category of (nice) topological spaces with G-action, inverting weak
equivalences of underlying spaces ~» the co-category of spaces with (homotopy
coherent) G-action Fun(BG, Top). From this, can extract homotopy fixed points
and orbits X"¢, X, but lose information about the homotopy types of the actual
fixed points X©.
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Equivariant homotopy theory: spaces

Let G be a finite group and let X be a topological space with G-action.
Question: What is the "homotopy type” of X7

In the category of (nice) topological spaces with G-action, inverting weak
equivalences of underlying spaces ~» the co-category of spaces with (homotopy
coherent) G-action Fun(BG, Top). From this, can extract homotopy fixed points
and orbits X"¢, X, but lose information about the homotopy types of the actual
fixed points X©.

For a more refined invariant, can instead invert maps that induce weak
equivalences on all fixed points ~» the co-category of G-spaces

Top; := Fun(OY, Top) (Elmendorf’s theorem). Here O is the orbit category of
G.

Jay Shah (MIT) The theory of spectral Mackey functors July 4, 2017 2/17



Flavors of G-spectra

naive

Naive option for G-spectra: stabilize Top; to get Sp'"® := Fun(O, Sp). Here
Sp is the oo-category of spectra.
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Sp is the oo-category of spectra.

Problem: Naive G-spectra do not possess transfers.
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Flavors of G-spectra

Naive option for G-spectra: stabilize Topg to get SpE™® := Fun(O%, Sp). Here
Sp is the oo-category of spectra.

Problem: Naive G-spectra do not possess transfers.
Example: Let KUg be equivariant complex K-theory. Evaluating KUg on a

G-orbit G/H gives Rep(H). Rep(—) enjoys additional covariant functoriality in
O given by induction of representations.
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Flavors of G-spectra

naive

Naive option for G-spectra: stabilize Top; to get Sp'"® := Fun(O, Sp). Here
Sp is the oo-category of spectra.

Problem: Naive G-spectra do not possess transfers.
Example: Let KUg be equivariant complex K-theory. Evaluating KUg on a
G-orbit G/H gives Rep(H). Rep(—) enjoys additional covariant functoriality in

O given by induction of representations.

Borel option for G-spectra: take Fun(BG, Sp). Doesn't contain example of KUg:
difference measured by Atiyah-Segal completion theorem.
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Spectral Mackey functors

Upshot: we need to build transfers into our category of G-spectra.
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Spectral Mackey functors

Upshot: we need to build transfers into our category of G-spectra.

Let Fg be the category of finite G-sets. Let Span(F¢) be the (2, 1)-category of
spans in Fg:

@ objects: same as Fg.
o morphisms: Map(U, V) := t((Fs)/(uxv)), where ¢ denotes the maximal

subgroupoid functor (discard the non-equivalences). Composition is given by
forming the pullback of spans.
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Spectral Mackey functors

Upshot: we need to build transfers into our category of G-spectra.

Let Fg be the category of finite G-sets. Let Span(F¢) be the (2, 1)-category of
spans in Fg:

@ objects: same as Fg.

o morphisms: Map(U, V) := t((Fs)/(uxv)), where ¢ denotes the maximal
subgroupoid functor (discard the non-equivalences). Composition is given by
forming the pullback of spans.

Observe that Span(F¢) admits direct sums, given by taking the coproduct of
underlying G-sets. Define the co-category of G-spectral Mackey functors

Sp¢ := Fun®(Span(Fg), Sp)
to be the category of direct-sum preserving functors from Span(F¢) to Sp.

Another name for Span(F¢) is the effective Burnside category. The Burnside
(0o-)category A(G) is then obtained by group completing the hom-groupoids with
respect to disjoint union.
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G-spectra as spectral Mackey func

Alternative definition of G-spectra: invert representation spheres (one point
compactifications of real G-representations). By a cofinality argument, it suffices
to invert regular representation sphere 5 ~»

Snge"“i"e = IE ( LN Topg . 2, TopGV*)
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G-spectra as spectral Mackey func

Alternative definition of G-spectra: invert representation spheres (one point
compactifications of real G-representations). By a cofinality argument, it suffices
to invert regular representation sphere 5 ~»

Snge"“i"e = I'L" ( LN Topg . 2, TopGV*)

Theorem (Guillou-May): There is an equivalence Sp&™™ ~ Sp, where

X = (G/H — X" := F(£2°(G/H), X))
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G-spectra as spectral Mackey func

Alternative definition of G-spectra: invert representation spheres (one point
compactifications of real G-representations). By a cofinality argument, it suffices
to invert regular representation sphere 5 ~»

Snge"“i"e = I'L" ( LN Topg . 2, TopGV*)

Theorem (Guillou-May): There is an equivalence Sp&™™ ~ Sp, where

X = (G/H — X" := F(£2°(G/H), X))

This other description emphasizes that one has the subgroup RO(G) of the Picard
group Pic(Sp¢) of invertible objects in G-spectra. On the other hand, the
spectral Mackey functor approach highlights the transfers, and also separates the
complexity of Sp into two parts: Span(Fg) and Sp.
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Examples of spectral Mackey functors

Algebraic: ordinary Mackey functor Span(F¢) —> Ab supplies G-spectrum,
postcomposing by Eilenberg-Maclane functor H : Ab — Sp. Of course, the same
thing works for chain complexes of R-modules.
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Examples of spectral Mackey functors

Algebraic: ordinary Mackey functor Span(F¢) —> Ab supplies G-spectrum,
postcomposing by Eilenberg-Maclane functor H : Ab — Sp. Of course, the same
thing works for chain complexes of R-modules.

Categorical / K-theoretic: Loosely, Span(Fg) — Caty, ~ G-spectrum by
application of some K-theory machine. E.g. produce KUg from G/H — Vecty.
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Examples of spectral Mackey functors

Algebraic: ordinary Mackey functor Span(F¢) —> Ab supplies G-spectrum,
postcomposing by Eilenberg-Maclane functor H : Ab — Sp. Of course, the same
thing works for chain complexes of R-modules.

Categorical / K-theoretic: Loosely, Span(Fg) — Caty, ~ G-spectrum by
application of some K-theory machine. E.g. produce KUg from G/H — Vecty.

In general, difficult to write down oo-functors by hand, because one needs to
specify an infinite hierarchy of coherence data. When the target is Cat,,, one has
an adaptation of the technology of (co)cartesian fibrations which allows one to
produce categorical input.
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Example of representable functors

Have Yoneda map
J : Span(Fg) — Ps(Span(F¢)) ~ Fun*(Span(F¢), Top)

into nonabelian derived category. Target is co-category of G-E..-spaces.
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Example of representable functors

Have Yoneda map
J : Span(Fg) — Ps(Span(F¢)) ~ Fun*(Span(F¢), Top)
into nonabelian derived category. Target is co-category of G-E..-spaces.

Further compose with left adjoint to levelwise 2 to get into Sp;. Then formula
for 1-excisive approximation of a functor shows that

Jj(U) : V= K(Map(U, V)) = K(«(Fc) juxv)

where K is group completion. Identifying j(U) with X3°U, this is the equivariant
Barrett-Priddy-Quillen theorem (key detail in Guillou-May comparison).
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Functoriality

Restriction, induction, coinduction: The adjunction
Indg: Fy~ (Fg)/(G/H) — Fg¢ :Resf,
obtains, using self-duality of Span(—), the ambidextrous adjunction
Indg;: Span(F) = Span(F¢) :Res},

and hence the same for G and H-spectra i.e. the Wirthmuller isomorphism.
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Functoriality

Restriction, induction, coinduction: The adjunction
G. - . G
Ind,_,. FH >~ (FG)/(G/H) «— FG .ResH
obtains, using self-duality of Span(—), the ambidextrous adjunction
Indg;: Span(Fy) = Span(F¢) :Resg
and hence the same for G and H-spectra i.e. the Wirthmuller isomorphism.

Fixed point functors: Let H < G. Adjunction 7*: Fo/hn == F¢ :m ~
categorical fixed points WX = 7** : Sp. — Spg, 1 and geometric fixed points
O = ()1 : Spg — SPg/h-

Upshot: target being Sp is immaterial for defining these functors.
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Day convolution

Let C be a symmetric monoidal co-category and D be a presentably symmetric
monoidal co-category ( := D presentable, in particular admits all colimits, and ®
preserves colimits separately in each variable). We want a symmetric monoidal
structure on Fun(C, D) such that:

@ Fun(C, D) is presentably symmetric monoidal.

@ C% x D 2% Fun(C,Top) x D -2 Fun(C, D) is symmetric monoidal
(generalizes, when D = Top, requiring that Yoneda map is symmetric
monoidal).
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Day convolution

Let C be a symmetric monoidal co-category and D be a presentably symmetric
monoidal co-category ( := D presentable, in particular admits all colimits, and ®
preserves colimits separately in each variable). We want a symmetric monoidal
structure on Fun(C, D) such that:

@ Fun(C, D) is presentably symmetric monoidal.

@ C% x D 2% Fun(C,Top) x D -2 Fun(C, D) is symmetric monoidal
(generalizes, when D = Top, requiring that Yoneda map is symmetric
monoidal).

Explicitly, given two functors F, G : C — D, F ® G computed as the left Kan
extension (F ® G)(c) = colim F(c1) ®p G(c2),

(C1><C2*>C)€C/C><5CXC

cxc 8 pxp-E%p

Cl . FRG6

c
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Spectral Green functors

In our situation, take product on Span(F¢) induced by the cartesian product of
finite G-sets, and smash product on Sp. Obtains symmetric monoidal structure on
Sp¢. Spectral Green functors are then commutative algebra objects in Sp.
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Spectral Green functors

In our situation, take product on Span(F¢) induced by the cartesian product of
finite G-sets, and smash product on Sp. Obtains symmetric monoidal structure on
Sp¢. Spectral Green functors are then commutative algebra objects in Sp.

Commutative algebras for the Day convolution product admit a simple
description: they are the lax symmetric monoidal functors.
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Spectral Green functors

In our situation, take product on Span(F¢) induced by the cartesian product of
finite G-sets, and smash product on Sp. Obtains symmetric monoidal structure on
Sp¢. Spectral Green functors are then commutative algebra objects in Sp.

Commutative algebras for the Day convolution product admit a simple
description: they are the lax symmetric monoidal functors.

Every object in Span(F¢) is a commutative algebra via ¢ x ¢ LS ¢, so the

values of a spectral Green functor are commutative algebras in Sp. More work:
contravariant functoriality yields algebra maps, covariant yields module maps.
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Equivariantly, we want not only to discuss ordinary smash products, but also
smash products where the indexing set admits a group action. For this, need to
interpolate between Spy ranging over subgroups H < G.

Additively, have induction Ind,(_;, : Spy —> Sp¢ and multiplicatively, have HHR
norm NS : Spy — Spg.
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Equivariantly, we want not only to discuss ordinary smash products, but also
smash products where the indexing set admits a group action. For this, need to
interpolate between Spy ranging over subgroups H < G.

Additively, have induction Ind,c;;, : Spy —> Sp¢ and multiplicatively, have HHR
norm NS : Spy — Spg.

Use coinduction functors in cartesian situation (i.e. spaces):
Coind§, = NS : Top,, — Topg right adjoint to Resf;, X — Map(G, X).

Pointing: Define symmetric monoidal functors (with respect to smash product)
N,‘j : Topy . — Topg . which prolong Coind,(j : Topy — Top; as a symmetric
monoidal left Kan extension.

Coindy,
Topy, ——" Top,

J((—)+ J((—)+
NG

TOpH,* H> TopG,*
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Explicitly, for X a pointed space, N (X)(G/H) ~ X"[¢Hl Observe then that
N§(S1) ~ S”, so the regular representation sphere appears from purely categorical
considerations.
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Explicitly, for X a pointed space, N (X)(G/H) ~ X"[¢Hl Observe then that
N§(S1) ~ S”, so the regular representation sphere appears from purely categorical
considerations.

Ditto for defining NS : Spy; — Spg:

Ni
Topy ., — Topg .

e, b

N
Spy "> Spg

Facts: Res® N¢ ~ (—)®ICl and #CNC ~ id. (N®X)C generally hard to
understand.

To compute N€, can write a spectrum as a filtered colimit of desuspensions of
suspension spectra.
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G-symmetric monoidal structures

The collection {Spy, : H < G} of symmetric monoidal co-categories together with
the norm functors interpolating between them cohere into a more sophisticated
‘G-symmetric monoidal’ structure.

Recall: To endow an oco-category C with the added structure of a symmetric
monoidal co-category is to define a cocartesian fibration C® — F,, satisfying a
Segal condition that decomposes (C®),, ~ C*".
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G-symmetric monoidal structures

The collection {Spy, : H < G} of symmetric monoidal co-categories together with
the norm functors interpolating between them cohere into a more sophisticated
‘G-symmetric monoidal’ structure.

Recall: To endow an oco-category C with the added structure of a symmetric
monoidal co-category is to define a cocartesian fibration C® — F,, satisfying a
Segal condition that decomposes (C®),, ~ C*".

Rough idea: Basic objects are G-categories i.e. cocartesian fibrations over OZ. A
G-SMC is a cocartesian fibration 7 : C® — F¢ . down to the G-category of flnlte
pointed G-sets, whose fiber over G/H is the category of finite pointed H-sets:

(F¢ «)6/H = Fh«. 7 is required to satisfy an appropriate G-Segal condition.
Norm functors NH are encoded by collapse maps G/H — G/G, whereas the
ordinary smash product is recorded by fold maps G/HU G/H — G/H.
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G-commutative algebras

Recall: given a symmetric monoidal co-category m : C® — F,, a commutative
algebra object A in C is a section ¢ : F, — C® of 7, with o(1,) = A, which
sends “inert” maps to cocartesian edges: the effect being that o(n.) ~ (A, ..., A)
and the unique active map n; — 1, that points n — 1 induces the
multiplication A® ... ® A — A.
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G-commutative algebras

Recall: given a symmetric monoidal co-category m : C® — F,, a commutative
algebra object A in C is a section ¢ : F, — C® of 7, with o(1,) = A, which
sends “inert” maps to cocartesian edges: the effect being that o(n.) ~ (A, ..., A)
and the unique active map n; — 1, that points n — 1 induces the
multiplication A® ... ® A — A.

Similarly, we define a G-commutative algebra object Ain a G-SMC C to be a
suitable section of C® — F .. Get maps NS Resf; A —> A in addition to usual

A® A — A (identifying A with object in flber Ce/6)-

In particular, we can norm elements in homotopy of G-commutative ring
spectrum: x € m,(Res® A) = NC(x) € 7pn(A).

Remark: levelwise mg of a G-commutative ring spectrum obtains a Tambara
functor (Ullman’s theorem).
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Examples of G-commutative algebras

Principle (Barwick, Gepner-Groth-Nikolaus, May in older language, ...): K-theory
(group completion or something more sophisticated) is lax symmetric monoidal.

Ergo, equivariant K-theory transforms categorical Green functors into spectral
Green functors.
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Examples of G-commutative algebras

Principle (Barwick, Gepner-Groth-Nikolaus, May in older language, ...): K-theory
(group completion or something more sophisticated) is lax symmetric monoidal.
Ergo, equivariant K-theory transforms categorical Green functors into spectral
Green functors.

In framework of G-symmetric monoidal categories, can further show that
equivariant K-theory is lax G-symmetric monoidal (work in progress by Barwick,
Guillou-May-Merling (?7)). For example, obtain G-commutative algebra structure
on KUg, using the additional information of the indexed tensor products (of
course, this example is already known).
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Examples of G-commutative algebras

Principle (Barwick, Gepner-Groth-Nikolaus, May in older language, ...): K-theory
(group completion or something more sophisticated) is lax symmetric monoidal.
Ergo, equivariant K-theory transforms categorical Green functors into spectral
Green functors.

In framework of G-symmetric monoidal categories, can further show that
equivariant K-theory is lax G-symmetric monoidal (work in progress by Barwick,
Guillou-May-Merling (?7)). For example, obtain G-commutative algebra structure
on KUg, using the additional information of the indexed tensor products (of
course, this example is already known).

Another example: Galois equivariant K-theory. Let E/k be a finite Galois

extension with Galois group G, and define Mackey functor G/H + Vect(EH). Get
norm N : Vect(E) — Vect(k) by using descent data on V®C.
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otopy theory

To make sense of the preceding ideas, we used more the orbit category of G
rather than G itself. In particular, nothing was reliant on the representation theory
of G (even the regular representation sphere S was defined abstractly). We can
play the same game with other categories O that resemble Og, in the sense that:
@ O is orbital: the finite coproduct completion F = O admits pullbacks, so
that the span construction is sensible.
@ O is atomic: O admits no-nontrivial retracts. Technical hypothesis needed
for the stability theory to work.
Examples: O = F;’,? ~» n-excisive functors Sp — Sp (Glasman), cyclonic orbit
categories of Barwick/Glasman ~» Sl-spectra genuine relative to finite subgroups,
global equivariant spectra with respect to finite groups, ...

Non-example: G-spectra for compact Lie group G of dimension > 0 (because of
presence of dimension shifting transfers).
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Thanks for listening!

Jay Shah (MIT The theory of spectral Mackey functors



