
The theory of spectral Mackey functors

Jay Shah

MIT

July 4, 2017

Jay Shah (MIT) The theory of spectral Mackey functors July 4, 2017 1 / 17



Equivariant homotopy theory: spaces

Let G be a finite group and let X be a topological space with G -action.

Question: What is the “homotopy type” of X?

In the category of (nice) topological spaces with G -action, inverting weak
equivalences of underlying spaces ; the ∞-category of spaces with (homotopy
coherent) G -action Fun(BG ,Top). From this, can extract homotopy fixed points
and orbits X hG , XhG , but lose information about the homotopy types of the actual
fixed points XG .

For a more refined invariant, can instead invert maps that induce weak
equivalences on all fixed points ; the ∞-category of G -spaces
TopG := Fun(Oop

G ,Top) (Elmendorf’s theorem). Here Oop
G is the orbit category of

G .
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Flavors of G -spectra

Naive option for G -spectra: stabilize TopG to get Spnaive
G := Fun(Oop

G ,Sp). Here
Sp is the ∞-category of spectra.

Problem: Naive G -spectra do not possess transfers.

Example: Let KUG be equivariant complex K -theory. Evaluating KUG on a
G -orbit G/H gives Rep(H). Rep(−) enjoys additional covariant functoriality in
OG given by induction of representations.

Borel option for G -spectra: take Fun(BG ,Sp). Doesn’t contain example of KUG :
difference measured by Atiyah-Segal completion theorem.
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Spectral Mackey functors

Upshot: we need to build transfers into our category of G -spectra.

Let FG be the category of finite G -sets. Let Span(FG ) be the (2, 1)-category of
spans in FG :

objects: same as FG .

morphisms: Map(U,V ) := ι((FG )/(U×V )), where ι denotes the maximal
subgroupoid functor (discard the non-equivalences). Composition is given by
forming the pullback of spans.

Observe that Span(FG ) admits direct sums, given by taking the coproduct of
underlying G -sets. Define the ∞-category of G -spectral Mackey functors

SpG := Fun⊕(Span(FG ),Sp)

to be the category of direct-sum preserving functors from Span(FG ) to Sp.

Another name for Span(FG ) is the effective Burnside category. The Burnside
(∞-)category A(G ) is then obtained by group completing the hom-groupoids with
respect to disjoint union.
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G-spectra as spectral Mackey functors

Alternative definition of G -spectra: invert representation spheres (one point
compactifications of real G -representations). By a cofinality argument, it suffices
to invert regular representation sphere Sρ ;

Spgenuine
G := lim

←−

(
...

Ωρ−−→ TopG ,∗
Ωρ−−→ TopG ,∗

)

Theorem (Guillou-May): There is an equivalence Spgenuine
G ' SpG , where

X 7→ (G/H 7→ XH := F (Σ∞+ (G/H),X ))

This other description emphasizes that one has the subgroup RO(G ) of the Picard
group Pic(SpG ) of invertible objects in G -spectra. On the other hand, the
spectral Mackey functor approach highlights the transfers, and also separates the
complexity of SpG into two parts: Span(FG ) and Sp.
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Examples of spectral Mackey functors

Algebraic: ordinary Mackey functor Span(FG ) Ab supplies G -spectrum,
postcomposing by Eilenberg-Maclane functor H : Ab Sp. Of course, the same
thing works for chain complexes of R-modules.

Categorical / K -theoretic: Loosely, Span(FG ) Cat∞ ; G -spectrum by
application of some K -theory machine. E.g. produce KUG from G/H 7→ VectH .

In general, difficult to write down ∞-functors by hand, because one needs to
specify an infinite hierarchy of coherence data. When the target is Cat∞, one has
an adaptation of the technology of (co)cartesian fibrations which allows one to
produce categorical input.
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Example of representable functors

Have Yoneda map

j : Span(FG ) PΣ(Span(FG )) ' Fun×(Span(FG ),Top)

into nonabelian derived category. Target is ∞-category of G -E∞-spaces.

Further compose with left adjoint to levelwise Ω∞ to get into SpG . Then formula
for 1-excisive approximation of a functor shows that

j(U) : V 7→ K (Map(U,V )) = K (ι(FG )/U×V )

where K is group completion. Identifying j(U) with Σ∞+ U, this is the equivariant
Barrett-Priddy-Quillen theorem (key detail in Guillou-May comparison).
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Functoriality

Restriction, induction, coinduction: The adjunction

IndG
H : FH ' (FG )/(G/H) FG :ResGH

obtains, using self-duality of Span(−), the ambidextrous adjunction

IndG
H : Span(FH) Span(FG ) :ResGH

and hence the same for G and H-spectra i.e. the Wirthmuller isomorphism.

Fixed point functors: Let H E G . Adjunction π∗ : FG/H FG :π∗ ;

categorical fixed points ΨH = π∗∗ : SpG SpG/H and geometric fixed points

ΦH = (π∗)! : SpG SpG/H .

Upshot: target being Sp is immaterial for defining these functors.
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Day convolution

Let C be a symmetric monoidal ∞-category and D be a presentably symmetric
monoidal ∞-category ( := D presentable, in particular admits all colimits, and ⊗
preserves colimits separately in each variable). We want a symmetric monoidal
structure on Fun(C ,D) such that:

1 Fun(C ,D) is presentably symmetric monoidal.

2 C op × D
j×id−−→ Fun(C ,Top)× D

�−→ Fun(C ,D) is symmetric monoidal
(generalizes, when D = Top, requiring that Yoneda map is symmetric
monoidal).

Explicitly, given two functors F ,G : C D, F ⊗ G computed as the left Kan
extension (F ⊗ G )(c) = colim

(c1×c2→c)∈C/c×CC×C
F (c1)⊗D G (c2),

C × C D × D D

C

F×G

⊗C

⊗D

F⊗G
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Spectral Green functors

In our situation, take product on Span(FG ) induced by the cartesian product of
finite G -sets, and smash product on Sp. Obtains symmetric monoidal structure on
SpG . Spectral Green functors are then commutative algebra objects in SpG .

Commutative algebras for the Day convolution product admit a simple
description: they are the lax symmetric monoidal functors.

Every object in Span(FG ) is a commutative algebra via c × c
∆←− c

=−→ c , so the
values of a spectral Green functor are commutative algebras in Sp. More work:
contravariant functoriality yields algebra maps, covariant yields module maps.
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HHR norm

Equivariantly, we want not only to discuss ordinary smash products, but also
smash products where the indexing set admits a group action. For this, need to
interpolate between SpH ranging over subgroups H ≤ G .
Additively, have induction IndG

H : SpH SpG and multiplicatively, have HHR
norm NG

H : SpH SpG .

Use coinduction functors in cartesian situation (i.e. spaces):
CoindG

H = NG
H : TopH TopG right adjoint to ResGH , X 7→ MapH(G ,X ).

Pointing: Define symmetric monoidal functors (with respect to smash product)
NG

H : TopH,∗ TopG ,∗ which prolong CoindG
H : TopH TopG as a symmetric

monoidal left Kan extension.

TopH TopG

TopH,∗ TopG ,∗

CoindG
H

(−)+ (−)+

NG
H
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HHR norm

Explicitly, for X a pointed space, NG
1 (X )(G/H) ' X∧[G :H]. Observe then that

NG
1 (S1) ' Sρ, so the regular representation sphere appears from purely categorical

considerations.

Ditto for defining NG
H : SpH SpG :

TopH,∗ TopG ,∗

SpH SpG

NG
H

Σ∞ Σ∞

NG
H

Facts: ResG NG ' (−)⊗|G | and ΦGNG ' id. (NGX )G generally hard to
understand.

To compute NG , can write a spectrum as a filtered colimit of desuspensions of
suspension spectra.
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G -symmetric monoidal structures

The collection {SpH : H ≤ G} of symmetric monoidal ∞-categories together with
the norm functors interpolating between them cohere into a more sophisticated
‘G -symmetric monoidal’ structure.

Recall: To endow an ∞-category C with the added structure of a symmetric
monoidal ∞-category is to define a cocartesian fibration C⊗ F∗, satisfying a
Segal condition that decomposes (C⊗)n+ ' C×n.

Rough idea: Basic objects are G -categories i.e. cocartesian fibrations over Oop
G . A

G -SMC is a cocartesian fibration π : C⊗ FG ,∗ down to the G -category of finite
pointed G -sets, whose fiber over G/H is the category of finite pointed H-sets:
(FG ,∗)G/H ' FH,∗. π is required to satisfy an appropriate G -Segal condition.

Norm functors NG
H are encoded by collapse maps G/H G/G , whereas the

ordinary smash product is recorded by fold maps G/H t G/H G/H.
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G -commutative algebras

Recall: given a symmetric monoidal ∞-category π : C⊗ F∗, a commutative
algebra object A in C is a section σ : F∗ C⊗ of π, with σ(1+) = A, which
sends “inert” maps to cocartesian edges: the effect being that σ(n+) ' (A, ...,A)
and the unique active map n+ 1+ that points n 1 induces the
multiplication A⊗ ...⊗ A A.

Similarly, we define a G -commutative algebra object A in a G -SMC C to be a
suitable section of C⊗ FG ,∗. Get maps NG

H ResGH A A in addition to usual
A⊗ A A (identifying A with object in fiber CG/G ).

In particular, we can norm elements in homotopy of G -commutative ring
spectrum: x ∈ πn(ResG A) ⇒ NG (x) ∈ πρn(A).

Remark: levelwise π0 of a G -commutative ring spectrum obtains a Tambara
functor (Ullman’s theorem).
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Examples of G -commutative algebras

Principle (Barwick, Gepner-Groth-Nikolaus, May in older language, ...): K -theory
(group completion or something more sophisticated) is lax symmetric monoidal.
Ergo, equivariant K -theory transforms categorical Green functors into spectral
Green functors.

In framework of G -symmetric monoidal categories, can further show that
equivariant K -theory is lax G -symmetric monoidal (work in progress by Barwick,
Guillou-May-Merling (?)). For example, obtain G -commutative algebra structure
on KUG , using the additional information of the indexed tensor products (of
course, this example is already known).

Another example: Galois equivariant K -theory. Let E/k be a finite Galois
extension with Galois group G , and define Mackey functor G/H 7→ Vect(EH). Get
norm NG

1 : Vect(E ) Vect(k) by using descent data on V⊗G .
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Guillou-May-Merling (?)). For example, obtain G -commutative algebra structure
on KUG , using the additional information of the indexed tensor products (of
course, this example is already known).

Another example: Galois equivariant K -theory. Let E/k be a finite Galois
extension with Galois group G , and define Mackey functor G/H 7→ Vect(EH). Get
norm NG

1 : Vect(E ) Vect(k) by using descent data on V⊗G .
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Beyond equivariant homotopy theory

To make sense of the preceding ideas, we used more the orbit category of G
rather than G itself. In particular, nothing was reliant on the representation theory
of G (even the regular representation sphere Sρ was defined abstractly). We can
play the same game with other categories O that resemble OG , in the sense that:

1 O is orbital: the finite coproduct completion F = Ot admits pullbacks, so
that the span construction is sensible.

2 O is atomic: O admits no-nontrivial retracts. Technical hypothesis needed
for the stability theory to work.

Examples: O = Fsurj
≤n ; n-excisive functors Sp Sp (Glasman), cyclonic orbit

categories of Barwick/Glasman ; S1-spectra genuine relative to finite subgroups,
global equivariant spectra with respect to finite groups, ...

Non-example: G -spectra for compact Lie group G of dimension > 0 (because of
presence of dimension shifting transfers).
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Thanks for listening!
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