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ABSTRACT. We develop foundations for the category theory of co-categories parametrized by a base
oo-category. Our main contribution is a theory of parametrized homotopy limits and colimits, which
recovers and extends the Dotto—Moi theory of G-colimits for G a finite group when the base is chosen
to be the orbit category of G. We apply this theory to show that the G-co-category of G-spaces
is freely generated under G-colimits by the contractible G-space, thereby affirming a conjecture of

Mike Hill.
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1. INTRODUCTION

This thesis lays foundations for a theory of co-categories parametrized by a base oco-category S.
Our interest in this project originated in an attempt to locate the core homotopy theories of interest in
equivariant homotopy theory - those of G-spaces and G-spectra - within the appropriate co-categorical
framework. To explain, let G be a finite group and let us review the definitions of the oco-categories
of G-spaces and G-spectra, with a view towards endowing them with universal properties.

Consider a category Tops of (nice) topological spaces equipped with G-action, with morphisms
given by G-equivariant continuous maps. There are various homotopy theories that derive from this
category, depending on the class of weak equivalences that one chooses to invert. At one end, we can
invert the class #; of G-equivariant maps which induce a weak homotopy equivalence of underlying
topological spaces, forgetting the G-action. If we let Top denote the oco-category of spaces, then we
have the identification

Topg[#; '] ~ Fun(BG, Top);

inverting % obtains the oo-category of spaces with G-action. For many purposes, Fun(BG, Top) is

the homotopy theory that one wishes to contemplate, but here we instead highlight its main deficiency.

Namely, passing to this homotopy theory blurs the distinction between homotopy and actual fixed

points, in that the functor Top; — Fun(BG, Top) forgets the homotopy types of the various spaces

XH for H a nontrivial subgroup of G. Because many arguments in equivariant homotopy theory
1
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involve comparing X with the homotopy fixed points X" we want to retain this data. To this
end, we can instead let # be the class of G-equivariant maps which induce an equivalence on H-fixed
points for every subgroup H of G. Let Tops = Topg[# ~!]; this is the co-category of G-spaces.

Like with Topg[#; '], we would like a description of Top, which eliminates any reference to
topological spaces with G-action, for the purpose of comprehending its universal property. Elmendorf’s
theorem grants such a description: we have

Topg[# '] ~ Fun(O¥, Top),

where Og is the category of orbits of the group G. Thus, as an oo-category, Topy is the free
cocompletion of Og.
It is a more subtle matter to define the homotopy theory of G-spectra. There are at least three
possibilities:
(1) The oo-category of Borel G-spectra, i.e. spectra with G-action: This is Fun(BG, Sp), which
is the stabilization of Fun(BG, Top).
(2) The oco-category of ‘naive’ G-spectra, i.e. spectral presheaves on Og: This is Fun(OZ, Sp),
which is the stabilization of Top.
(3) The oo-category of ‘genuine’ G-spectra: Let A“Y(Fg) be the effective Burnside (2, 1)-category
of G, given by taking as objects finite G-sets, as morphisms spans of finite G-sets, and as 2-
morphisms isomorphisms between spans. Let Sp® = Fun®(A4%/(F¢), Sp) be the co-category
of direct-sum preserving functors from A%¥(Fg) to Sp, i.e. that of spectral Mackey functors.t
The third possibility incorporates essential examples of cohomology theories for G-spaces, such as
equivariant K-theory, because G-spectra in this sense possess transfers along maps of finite G-sets,
encoded by the covariant maps in A% (Fg). It is thus what homotopy theorists customarily mean by
G-spectra. However, from a categorical perspective it is a more mysterious object than the co-category
of naive G-spectra, since it is not the stabilization of G-spaces. We are led to ask:

Question: What is the universal property of Sp“? More precisely, we have an adjunction
Y¥: Topg == Sp¢ Q>

with Q°° given by restriction along the evident map OF — A% (F¢), and we would like a universal
property for X3 or Q°°.
Put another way, what is the categorical procedure which manufactures Sp® from Top?

The key idea is that for this procedure of ‘G-stabilization’ one needs to enforce ‘G-additivity’ over
and above the usual additivity satisfied by a stable co-category?: that is, one wants the coincidence
of coproducts and products indexed by finite sets with G-action. Reflecting upon the possible homo-
topical meaning of such a G-(co)product, we see that for a transitive G-set G/H, [,y and [, 5

should be as functors the left and right adjoints to the restriction functor Sp® — Sp’, ie. the
induction and coinduction functors, and G-additivity then becomes the Wirthmiiller isomorphism. In
particular, we see that G-additivity is not a property that Sp® can be said to enjoy in isolation, but
rather one satisfied by the presheaf Sp® of oo-categories indexed by O¢, where SpG(G/—) = Sp(_).
Correspondingly, we must rephrase our question so as to inquire after the universal property of the
morphism of Og-presheaves ¥ : Top, — SipG, where @G(G/—) = Top(_y and X is objectwise
given by suspension.

We now pause to observe that for the purpose of this analysis the group G is of secondary importance
as compared to its associated category of orbits Og. Indeed, we focused on G-additivity as the
distinguishing feature of genuine vs. naive G-spectra, as opposed to the invertibility of representation
spheres, in order to evade representation theoretic aspects of equivariant stable homotopy theory.
In order to frame our situation in its proper generality, let us now dispense with the group G and
replace Og by an arbitrary oo-category T'. Call a presheaf of co-categories on T a T'-category. The

IThis is not the definition which first appeared in the literature for G-spectra, but it is equivalent to e.g. the
homotopy theory of orthogonal G-spectra by the work of Guillou-May.
2We first learned of this perspective on G-spectra from Mike Hopkins.
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T'-category of T-spaces Top,, is given by the functor T°7 — Cat, t Fun((7);)°?, Top). Note
that this specializes to @G when T' = O¢ because Oy ~ (Og) /(a/m); slice categories stand in for
subgroups in our theory. With the theory of T-colimits advanced in this thesis, we can then supply a
universal property for @T as a T-category:

1.1. Theorem. Suppose T is any co-category. Then Top,. is T-cocomplete, and for any T-category
E which is T-cocomplete, the functor of evaluation at the T-final object

Fun”(Top,,, E) — E

induces an equivalence from the oo-category of T-functors Top, — FE which strongly preserve T-
colimits to E. In other words, TopT is freely generated under T-colimits by the final T-category.

When T = Og, this result was originally conjectured by Mike Hill.

To go further and define T-spectra, we need a condition on 7" so that it supports a theory of spectral
Mackey functors. We say that T is orbital if T' admits multipullbacks, by which we mean that its finite
coproduct completion Fr admits pullbacks. The purpose of the orbitality assumption is to ensure
that the effective Burnside category A®¥(F7) is well-defined. Note that the slice categories Ty, are
orbital if T is. We define the T-category of T-spectra Sp” to be the functor T°? —> Cat, given by
t — Fun® (A (Fr /.); Sp). We then have the following theorem of Denis Nardin concerning Sp” from
[13], which resolves our question:

1.2. Theorem (Nardin). Suppose T is an atomic® orbital co-category. Then @T is T-stable, and for
any pointed T'-category C' which has all finite T-colimits, the functor of postcomposition by Q>

(Q%), : Funl—™*(C, SjT) — Lin"(C, Top,,)

induces an equivalence from the co-category of T-functors C — @T which preserve finite T-colimits
to the co-category of T-linear functors C' — Top,., i.e. those T-functors which are fiberwise linear
and send finite T-coproducts to T-products.

We hope that the two aforementioned theorems will serve to impress upon the reader the utility of
the purely oo-categorical work that we undertake in this thesis.

Warning. In contrast to this introduction thus far and the conventions adopted elsewhere (e.g. in
[13]), we will henceforth speak of S-categories, S-colimits, etc. for S = T°P.

What is parametrized oco-category theory? Roughly speaking, parametrized co-category theory
is an interpretation of the familiar notions of ordinary or ‘absolute’ co-category theory within the
(00, 2)-category of functors Fun(S, Cat, ), done relative to a fixed ‘base’ co-category S. By ‘interpre-
tation’, we mean something along the lines of the program of Emily Riehl and Dominic Verity, which
axiomatizes the essential properties of an (00, 2)-category that one needs to do formal category theory
into the notion of an co-cosmos, of which Fun(S, Cat,) is an example. In an oco-cosmos, one can
write down in a formal way notions of limits and colimits, adjunctions, Kan extensions, and so forth.
Working out what this means in the example of Cat..-valued functors is the goal of this thesis. For
example, we will see that the Dotto-Moi theory of G-colimits ([5]) coincides with that of OZ’-colimits
in the sense of parametrized oco-category theory.

In contrast to Riehl-Verity, we will work within the model of quasi-categories and not hesitate
to use special aspects of our model (e.g. combinatorial arguments involving simplicial sets). We
are motivated in this respect by the existence of a highly developed theory of cocartesian fibrations
due to Jacob Lurie, which we review in §1. Cocartesian fibrations are our preferred way to model
Cat.-valued functors, for two reasons:

(1) The data of a functor F' : S — Cat, is overdetermined vs. that of a cocartesian fibration
over S, in the sense that to define F' one must prescribe an infinite hierarchy of coherence data,
which under the functor-fibration correspondence amounts to prescribing an infinite sequence
of compatible horn fillings.* Because of this, specifying any given cocartesian fibration (which

3This is an additional technical hypothesis which we do not explain here. It will not concern us in the body of the
paper.
41t is for this reason that one speaks of straightening a cocartesian fibration to a functor.
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one ultimately needs to do in order to connect our theory to applications) is typically an easier
task than specifying the corresponding functor.

(2) The Grothendieck construction on a functor S —s Cat, is made visible in the cocartesian
fibration setup, as the total category of the cocartesian fibration. Many of our arguments
involve direct manipulation of the Grothendieck construction, in order to relate or reduce
notions of parametrized oco-category theory to absolute co-category theory.

We have therefore tailored our exposition to the reader familiar with the first five chapters of [9]; the
only additional major prerequisite is the part of [11, App. B] dealing with variants of the cocartesian
model structure of [9, §3] and functoriality in the base. Let us now give a select summary of the
contents of this thesis. Because our work is of a foundational nature, most of our results concern
novel constructions that we introduce in parametrized co-category theory, which parallel simpler
constructions in absolute co-category theory. These include:

» Functor S-categories (§3) which model the internal hom in Fun(S, Cat.,) at the level of
cocartesian fibrations;

Join and slice S-categories (§4), which permit us to define S-limits and S-colimits (§5);

A bestiary of fibrations defined relative to S (§7);

S-adjunctions (§8);

S-colimits parametrized by a base S-category (§9), and subsequently S-Kan extensions (§10);
» S-categories of presheaves (§11).

vvyyvyy

Our main theorems concerning these new constructions are:

» A relation between S-slice categories and ordinary slice categories (Thm. 6.6), which permits
us to establish the S-cofinality theory (Thm. 6.7);

» Existence and uniqueness of S-Kan extensions (Thm. 10.3);

The universal property of S-presheaves (Thm. 11.5), which specializes to Thm. 1.1;

» Bousfield-Kan style decomposition results for S-colimits (Thm. 12.6 and Thm. 12.13), which
imply in the case where S°P is orbital that, in a sense, S-(co)products are the only innovation
of our theory of S-(co)limits (Cor. 12.15).

v
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2. COCARTESIAN FIBRATIONS AND MODEL CATEGORIES OF MARKED SIMPLICIAL SETS

In this section, we give a rapid review of the theory of cocartesian fibrations and the surrounding
apparatus of marked simplicial sets. This primarily serves to fix some of our notation and conventions
for the remainder of the paper; for a more detailed exposition of these concepts, we refer the reader
to [4]. In particular, the reader should be aware of our special notation (Ntn. 2.28) for the S-fibers
of a S-functor.

Cocartesian fibrations. We begin with the basic definitions:

2.1. Definition. Let 7 : X — S be a map of simplicial sets. Then 7 is a cocartesian fibration if

(1) = is an inner fibration: for every n > 1, 0 < k < n and commutative square

A — X

L 1

A" — S,

the dotted lift exists.
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(2) For every edge a: 59 — s1 in S and xg € X with 7(x¢) = sg, there exists an edge e : zg — 21
in X with 7(e) = «, such that e is w-cocartesian: for every n > 1 and commutative square

Ag%X

L

A" — S
with f|ac01) = e, the dotted lift exists.

Dually, 7 is a cartesian fibration if w°P is a cocartesian fibration.
A cocartesian resp. cartesian fibration 7 : X — S is said to be a left resp. right fibration if for
every object s € S the fiber X is a Kan complex.

2.2. Definition. Suppose 7 : X — S and p: Y — S are (co)cartesian fibrations. Then a map of
(co)cartesian fibrations f : X —> Y is a map of simplicial sets such that po f = 7 and f carries
m-(co)cartesian edges to p-(co)cartesian edges.

2.3. Definition. In the case where S is an oco-category, we introduce alternative terminology for
cocartesian fibrations and left fibrations over S:

» An S-category resp. S-space C is a cocartesian resp. left fibration 7 : C' — S.
» An S-functor F : C — D between S-categories C' and D is a map of cocartesian fibrations
over S.

We now suppose that S is an co-category for the remainder of this section (and indeed, for this
paper).

2.4. Example (Arrow co-categories). The arrow oo-category &(S) of S is cocartesian over S via the
target morphism evy, and cartesian over S via the source morphism evy. An edge

e:[so = to] — [s1 — t1]

in 0(S) is evi-cocartesian resp. evo-cartesian if and only if evg(e) resp. evy(e) is an equivalence in S.

The fiber of evg : €(S) —> S over s is isomorphic to Lurie’s alternative slice category S s/ Using our
knowledge of the evi-cocartesian edges, we see that ev restricts to a left fibration S%/ —> S. In the
terminology of [9, 4.4.4.5], this is a corepresentable left fibration. We will refer to the corepresentable
left fibrations as S-points. Further emphasizing this viewpoint, we will often let s denote S*/.

To a beginner, the lifting conditions of Dfn. 2.1 can seem opaque. Under the assumption that S
is an oo-category, we have a reformulation of the definition of cocartesian edge, and hence that of
cocartesian fibration, which serves to illuminate its homotopical meaning.

2.5. Proposition. Let m : X — S be an inner fibration (so X is an oco-category). Then an edge
e:xg— x1 in X is w-cocartesian if and only if for every xo € X, the commutative square of mapping
spaces

Map y (21, 22) ——=——— Mapy (29, 72)

Maps (r(21), 7(w2)) " Maps (r(wo), 7(22))
is homotopy cartesian.

With some work, Prp. 2.5 can be used to supply an alternative, model-independent definition of
a cocartesian fibration: we refer to Mazel-Gee’s paper [12] for an exposition along these lines. In
any case, the collection of cocartesian fibrations over .S and maps thereof organize into a subcategory
Catggi‘lsrt of the overcategory Cat./g.

2.6. Example. Let Cat,, denote the (large) oo-category of (small) oo-categories. Then there exists
a universal cocartesian fibration % — Cat,, which is characterized up to contractible choice by the
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requirement that any cocartesian fibration 7 : X — S (with S a (small) simplicial set) fits into a
homotopy pullback square

X —
SiCatoo.

Concretely, one can take % to be the subcategory of the arrow category ¢'(Cat,,) spanned by the
representable right fibrations and morphisms thereof.

As suggested by Exm. 2.6, the functor
Fun(S, Cat,,) — Cat%"

oo/

given by pulling back along  — Cat, is an equivalence. The composition
Gr : Fun(S, Cat.,) — Catgg?‘gt C Cat /g

is the Grothendieck construction functor. Since equivalences in Fun(.S, Cat,) are detected objectwise,
Gr is conservative. Moreover, one can check that Gr preserves limit and colimits, so by the adjoint
functor theorem Gr admits both a left and a right adjoint

Fr4Gr+HH.

We call Fr the free cocartesian fibration functor: concretely, Fr(X — S) = X xg 0(S) =2 S, or as
a functor s — X x5, with functoriality obtained from S,_). The functor H can also be concretely
described using its universal mapping property: since Fr({s} C ) = S,,, the fiber H(X), is given by
Fun,g(Ss/, X), and the functoriality in S is obtained from that of S(_y,.

A model structure for cocartesian fibrations. We want a model structure which has as its
fibrant objects the cocartesian fibrations over a fixed simplicial set. However, it is clear that to define
it we need some way to remember the data of the cocartesian edges. This leads us to introduce marked
sitmplicial sets.

2.7. Definition. A marked simplicial set (X, £) is the data of a simplicial set X and a subset £ C X;
of the edges of X, such that £ contains all of the degenerate edges. We call £ the set of marked edges
of X. A map of marked simplicial sets f : (X,€) — (Y, F) is a map of simplicial sets f : X — YV
such that f(£) C F.

2.8. Notation. We introduce notation for certain classes of marked simplicial sets. Let X be a
simplicial set.
» X’ is X with only the degenerate edges marked.
» X' is X with all of its edges marked.
» Suppose that X is an co-category. Then X~ is X with its equivalences marked.
» Suppose that 7 : X — S is an inner fibration. Then ;X is X with its m-cocartesian edges
marked, and X% is X with its 7-cartesian edges marked.
» Let n > 0. Let ;A™ resp. yAf denote A™ resp. A§ with the edge {0,1} marked (if it exists)
along with the degenerate edges. Dually, let A™" resp. AZ“ denote A™ resp. Al with the edge
{n —1,n} marked.
Beware also that we will frequently not indicate the marking in the notation for a marked simplicial
set, leaving it either implicit or to be deduced from context.

For the rest of this section, fix a marked simplicial set (Z,€) where Z is an oo-category and &
contains all of the equivalences in Z; in our applications, Z will generally be some type of fibration
over S. Let sSet;r( 2, be the category of marked simplicial sets over (Z, ). Also denote sSet/+th by

sSetj‘Z. We will frequently abuse notation by referring to objects 7 : (X, F) — (Z,&) of sSet}'(Z’g)
by their domain (X, F) or X.

2.9. Definition. An object (X, F) in sSetj'(ng) is (Z,&)-fibered® if

5This differs from the definition in [11, B.0.19)].
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(1) #: X — Z is an inner fibration.
(2) For every n > 0 and commutative square

L7

hAn — (Z,g),

a dotted lift exists. In other words, letting n > 1, marked edges in X are m-cocartesian, and
letting n = 1, m-cocartesian lifts exist over marked edges in Z. (Note that condition 2 already
guarantees that X — Z is a cocartesian fibration if & = Z; however, it may happen that
not all of the m-cocartesian edges were marked in X.)

(3) For every commutative square

(AD)F Unzys (A2 — (X, F)

(A2)ﬂ — (Za 8)7

a dotted lift exists. In other words, marked edges are closed under composition.
(4) Let @ = A° [T aq0.2y A% [T Aq10y AC. For every commutative square

Q" — (X, F)

|

Qf — (2.6),

a dotted lift exists. We remark that this lifting property implies that marked edges in X are
stable under equivalences in the fiber of the target.

2.10. Example. Let 7 : X — Z be an inner fibration. Comparing with Dfn. 2.1, it is clear that
(X,F) is Z*-fibered if and only if 7 is a cocartesian fibration and (X, F) = ;X. At the other extreme,
(X, F) is Z~-fibered if and only if 7 is a categorical fibration and (X, F) = X~.

Recall that a model structure, if it exists, is determined by its cofibrations and fibrant objects. We
will define a model structure on sSetj'( 7.€) with cofibrations the monomorphisms and fibrant objects

given by the (Z, £)-fibered objects.

2.11. Definition. Define functors
Map,(—,—) :sSetj(Zyg)Op X sSetj'(Zyg) —> sSet
Fungz(—,—) :sSetj(Zyg)Op X sSetj'(Zyg) —> sSet

by Hom(A, Map,(X,Y)) = Hom/(z¢)(A* x X,Y) and Hom(A, Funz(X,Y)) = Hom/(z¢)(A* x
X,Y).5

2.12. Definition. A map f : A — B in sSet/+(Z7g) is a cocartesian equivalence (with respect to
(Z,€&)) if the following equivalent conditions obtain:
(1) For all (Z,&)-fibered X, f* : Map,(B,X) — Mapy(A, X) is an equivalence of Kan com-
plexes.
(2) For all (Z,&)-fibered X, f*: Fungz (B, X) — Funz(A4, X) is an equivalence of co-categories.

2.13. Theorem. There exists a left proper combinatorial model structure on the category sSetj(Z &)
which we call the cocartesian model structure, such that:

(1) The cofibrations are the monomorphisms.
(2) The weak equivalences are the cocartesian equivalences.

61n [11, App. BJ, these functors are denoted as MapuZ and Mapr respectively.
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(8) The fibrant objects are the (Z,E)-fibered objects.
Dually, we define the cartesian model structure on sSetj'(Z &) to be the cocartesian model structure

on sSetj'(Zg under the isomorphism given by taking opposites.

)er

We have the following characterization of the cocartesian equivalences between fibrant objects
(which is unsurprising, in light of the equivalence Catggc/gt ~ Fun(Z, Cat,)).

2.14. Proposition. Let X and Y be fibrant objects in sSet7(Z £) equipped with the cocartesian model
structure, and let f : X — Y be a map in sSetf(Z &) Then the following are equivalent:
(1) f is a cocartesian equivalence.
(2) [ is a homotopy equivalence, i.e. f admits a homotopy inverse: there exists a map g : Y — X
and homotopies h: (AN x X — X, b/ : (AN XY — Y in sSetj(Z g) connecting g o f to
idx and f o g to idy, respectively.
(8) f is a categorical equivalence.
(4) For every (not necessarily marked) edge o : A' — Z, fo : Al xz X — Al xzY is a
categorical equivalence.

If every edge of Z is marked, then (4) can be replaced by the following apparently weaker condition:

(4°) For every object z € Z, f, : X, — Y, is a categorical equivalence.
We also have the following characterization of the fibrations between fibrant objects.

2.15. Proposition. Let Y = (Y, F) be a fibrant object in SSetj'(Z’g) equipped with the cocartesian
model structure, and let f: X — Y be a map in sSetj(Z £ Then the following are equivalent:

(1) f is a fibration.

(2) X is fibrant, and f is a categorical fibration.

(3) f is fibrant in sSetj'(Y}.).

2.16. Corollary. Suppose Z —> S is a cocartesian fibration. Then the cocartesian model structure
sSetj‘hZ coincides with the ‘slice’ model structure on (sSetj‘S)/hZ created by the forgetful functor to
sSet;rS equipped with its cocartesian model structure.

2.17. Example. Suppose that Z is a Kan complex. Then the cocartesian and cartesian model struc-
tures on sSet7Z coincide. In particular, taking Z = A°, we will also refer to the cocartesian model

structure on sSet™ as the marked model structure. Since this model structure on sSet™ is unambigu-
ous, we will always regard sSet™ as equipped with it. Then the fibrant objects of sSet™ are precisely
the co-categories with their equivalences marked.

2.18. Example. Suppose that (Z,€) = Z~. Then the cocartesian and cartesian model structures on
sSetj'ZN coincide. Moreover, we have a Quillen equivalence

(-)°: (sSetjoyal) 1z == sSetj‘Zw U
where the functor U forgets the marking.

2.19. Example. The inclusion functor Top C Cat,, admits left and right adjoints B and ¢, where B
is the classifying space functor that inverts all edges and ¢ is the ‘core’ functor that takes the maximal
sub-oo-groupoid. These two adjunctions are modeled by the two Quillen adjunctions

U: sSett™ —— sSetquilien :(—)ﬁ7
(_)ﬁ: sSetquillen =—— sSet™ : M.
Here M(X, &) is the maximal sub-simplicial set of X such that all of its edges are marked.

In particular, we have that (—)” and (—)* send categorical equivalences resp. weak homotopy
equivalences to marked equivalences.
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2.20. Proposition. The bifunctor

— sSet™

+
X sSet [(Z1XZ2,E1xE2)"

— x —: sSett J(Z2,E3)

/(Z1,€1)
is left Quillen. Consequently, the bifunctors

Map,(—,—) :sSet}"(Zﬂ)Op X sSetj'(Zf) —> sSet Quilien

Fungz(—,—) :sSetj(Zﬂg)Op X sSetj'(Zf) —> sSet joyal
are right Quillen, so sSetj'(Z’E) is both a simplicial i.e. sSetuiien-enriched model category (with
respect to Map,, ) and sSet joyqi-enriched model category (with respect to Fung ).

2.21. Remark. By Prp. 2.20, sSetj'(Z 8 is an example of an co-cosmos in the sense of Riehl-Verity.

Finally, we explain how the formalism of marked simplicial sets can be used to extract the push-
forward functors implicitly defined by a cocartesian fibration. First, we need a lemma.

2.22. Lemma. Forn > 0, the inclusion i, : A" 22 A0} A{Zon} yA™ is left marked anodyne.
Consequently, for a cocartesian fibration C — S, the map

FU.n(hAn7 hC) — FU.n(An_l7 C) X Fun(An-1,C) FU.H(A", S)
induced by i, is a trivial Kan fibration.

Proof. We proceed by induction on n, the base case n = 1 being the left marked anodyne map
A%} — (AN Consider the commutative diagram

A0} 9gAn—2 5 A0} 4 Af2:m}
J/U infl J{
(AT} S AP &) ———— (AP |in

|

AN

where & is the collection of edges {0,i}, 0 < ¢ < n (and the degenerate edges). The square is a
pushout, and by the inductive hypothesis, the lefthand vertical map is left marked anodyne. We
deduce that i,, is left marked anodyne. The second statement now follows because the lifting problem

A Fun(hA", HC)

B *> Fun(An_la C) XFun(An—1,C) Fun(An’ S)

transposes to

AxpAm U Bx A — O

AxAn—1 ‘ L

B x A" ——m—— §
and the lefthand vertical map is left marked anodyne for any cofibration A — B by [9, 3.1.2.3]. O

The main case of interest in Lm. 2.22 is when n = 1, which shows that 0<°¢"(C) — C xg €(S)
is a trivial Kan fibration. Let P : C' xg O(S) — 0°““*(C) be a section that fixes the inclusion
C C 0t (C). Then we say that P or the further composite P’ = evy oP is a cocartesian pushforward
for C — S. Given an edge a of S, P, : Cs —> C} is the pushforward functor o determined under
the equivalence Cat7%" ~ Fun(S, Cato).
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Functoriality in the model structure. Let 7 : X — Z be a map of simplicial sets. Then the
pullback functor 7* : sSet,y — sSet,x admits a left adjoint m, given by postcomposing with 7.
In addition, since sSet is a topos, 7* also admits a right adjoint m,, which may be thought of as the
functor of relative sections because Hom,x (4, f«(B)) = Hom/y (A xx Y, B).

Now supposing that 7 is a map of marked simplicial sets, 7*, m, and 7, extend to functors of
marked simplicial sets over X or Z in an evident manner. We then seek conditions under which the
adjunctions m 4 7* and 7* 4 m, are Quillen with respect to the cocartesian model structures. To this
end, we have the following theorem of Lurie:

2.23. Theorem. Let
(2,6) & (X, F) & (X', F)
be a span of marked simplicial sets such that Z, X, X’ are co-categories and the collections of markings
contain all the equivalences. Then the adjunction
o sSet/+(X 5 — SSet;r(X, 7 p*
is Quillen with respect to the cocartesian model structures. Moreover, suppose that

(1) For every object x € X and marked edge f : z — w(x) in Z, there exists a locally m-cartesian
edge xg — x in X lifting f.

(2) m is a flat categorical fibration.

(3) € and F are closed under composition.

(4) Suppose given a commutative diagram

T
77N
h
Ty ——————— To
in X where g is locally w-cartesian, 7(g) is marked, and ©(f) is an equivalence. Then f

is marked if and only if h is marked. (Note in particular that, taking f to be an identity
morphism, every locally T-cartesian edge lying over a marked edge is itself marked.)

Then the adjunction
e sSetj(X 5 — SSetj'(Z g) T
is Quillen with respect to the cocartesian model structures.
We formulated Thm. 2.23 as a theorem concerning a span X & 7 2 X' because in applications
we will typically be interested in the composite Quillen adjunction
mrt sSetj(X’}-) p— sSet;r(X,’f,) (TPt
Here are two examples.

2.24. Example (Pairing cartesian and cocartesian fibrations). Let 7 : X — Z be a cartesian fibration.
Then the span

ARG G
satisfies the hypotheses of Thm. 2.23. Now given a cocartesian fibration Y — Z, define
Fung (X,Y) = (m.7*) (Y — Z%).
Then the fiber of ].E‘:l;lz(X, Y') over an object z € Z is Fun(X,,Y,), and given a morphism « : zg — 21,

the pushforward functor oy : Fun(X,,,Y,,) — Fun(X,,,Y:,) is given by precomposition in the source
and postcomposition in the target.

2.25. Example (Right Kan extension). Let f : Y — Z be a functor. We can apply Thm. 2.23 to
perform the operation of right Kan extension at the level of cocartesian fibrations. Consider the span

78 E(0(Z) x 75 Y)E S YE
Then the conditions of Thm. 2.23 are satisfied, so we obtain a Quillen adjunction

(pry )i(evo)*: SSetj'Z pra— sSet}"Y :(evo)«(pry)*.
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In addition, the map C xz Y*¥ — C x 7 0(Z)* x 7 Y* induced by the identity section 1 : Z — €(2)
is a cocartesian equivalence in sSetj‘Y for C — Z fibrant in sSetj‘Z7 by [2, 9.8]. Consequently, the
induced adjunction of co-categories
(pry )i(evo)*: Catgg?[gt pa— Catgg%;t :(evog)«(pry)”*
is equivalent to
f*: Fun(Z, Caty) < Fun(Y, Cat) : /.

under the straightening/unstraightening equivalence (which is natural with respect to pullback).

Note that as a special case, if Z = A® we recover the formula Funy (Y¥,,C) ~ lim Fc of [9, 3.3.3.2]

(where C' — Y is a cocartesian fibration and F¢ : Y — Cat, the corresponding functor). Indeed,
this construction of the right Kan extension of a cocartesian fibration is suggested by that result and
the pointwise formula for a right Kan extension.

Finally, we will use the following two observations concerning the interaction of Thm. 2.23 with
compositions and homotopy equivalences of spans (which we also recorded in [4]).

2.26. Lemma. Suppose we have spans of marked simplicial sets

Xo ™ Zo 25 X4
and

X1 72 X,
which each satisfy the hypotheses of Thm. 2.23. Then the span

Z() ﬂ) Z() XX, Zl &) Zl
also satisfies the hypothesis of Thm. 2.23. Consequently, we obtain a Quillen adjunction
(p1opry)i(mo o pro)”: sSet [y == sSet, :(m0 o pro)«(p1 o pry)”,

which is the composite of the Quillen adjunction from sSetj‘X0 to sSetj‘X1 with the one from sSetj‘X1

+
to SSet/Xz.

Proof. The proof is by inspection. However, one should beware that the “long” span
Xo «— Zo Xx, Z1 — X2

may fail to satisfy the hypotheses of Thm. 2.23, because the composition of locally cartesian fibrations
may fail to again be locally cartesian; this explains the roundabout formulation of the statement.
Finally, observe that if we employ the base-change isomorphism pgmy . & pry , o prj, then we obtain
our Quillen adjunction as the composite of the two given Quillen adjunctions. O

2.27. Lemma. Suppose a morphism of spans of marked simplicial sets

Z
2N
X+—7 — X'
™ p
where py* and (p")1(7')* are left Quillen with respect to the cocartesian model structures on X and
X'. Suppose moreover that f is a homotopy equivalence in sSet;rX,, so that there exists a homotopy
inverse g and homotopies
h:id~gof and k:id>~ fog.

Then the natural transformation p* — (p")1(7')* induced by f is a cocartesian equivalence on all
objects, and, consequently, the adjoint natural transformation (7').(p')* —> m.p* is a cocartesian
equivalence on all fibrant objects.

Proof. The homotopies h and k pull back to show that for all X — C', the map
idX ch:XXCK—»XXCL

is a homotopy equivalence with inverse idx X ¢ g. The last statement now follows from [7, 1.4.4(b)]. O
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Parametrized fibers. In this brief subsection, we record notation for the S-fibers of an S-functor.
2.28. Notation. Given an S-category w: D — S and an object x € D, define
0,-(D) = {z} xp O(D).
For the full subcategory of cocartesian edges €¢°°*{(D) C (D), also define
z =025 (D).
Given an S-functor ¢ : C' — D, define
Ce=2x%xpeC.

By Lm. 12.10, z —> S™*/ is a trivial fibration. We will therefore also regard C; as a S/ _category
(and we will sometimes be cavalier about the distinction between z and S™/). Note however, that the
functor x — D is canonical in our setup, whereas we need to make a choice of cocartesian pushforward
to choose a S-functor S™/ — D that selects = € D.

3. FUNCTOR CATEGORIES

Let S be an oco-category. Then Fun(S, Cat,) is cartesian closed, so it possesses an internal hom.
As a basic application of the existence of f, under suitable hypotheses, we will define this internal
hom at the level of cocartesian fibrations over S.

3.1. Proposition. Let C — S be a cocartesian fibration. Let evg,evy : O(S) xg C —> S denote the
source and target maps. Then the functor

* . + + +
(evi)i(evo)" : sSet /g —> sSet/ﬁ(S)uXSuC — sSet g
is left Quillen with respect to the cocartesian model structures.

Proof. We verify the hypotheses of Thm. 2.23 as applied to the span S* <% ¢/(S) x g yC 2, St By
[9, 2.4.7.12], evy is a cartesian fibration and an edge e in &(S) xg C' is evg-cartesian if and only if its
projection to C'is an equivalence. (1) thus holds. (2) holds since cartesian fibrations are flat categorical
fibrations. (3) is obvious. (4) follows from the stability of cocartesian edges under equivalence. O

We will denote the right adjoint (ev).(evi)* by Fung(C, —) or Fung(;C, —). Prp. 3.1 implies that
if D — S is a cocartesian fibration, Fung(C, D) — S is a cocartesian fibration. Unwinding the
definitions, we see that an object of Fung(C, D) over s € S is a S*/-functor $*/ xg C' — S/ x5 D,

and a cocartesian edge of Fung(C, D) over an edge e : A! — S is a Al xg O(S)-functor A xg
ﬁ(S) Xs C — Al Xs ﬁ(S) Xg D.

3.2. Lemma. Lett:S — O(S) be the identity section and regard O(S)* as a marked simplicial set
over S wvia the target map. Then

(1) For every marked simplicial set X — S and cartesian fibration C — S,
idx x 1 x ide : X xg C" — X xg O(S)f x5 C"

18 a cocartesian equivalence in sSetj'S.
(1’) For every marked simplicial set X — S and cartesian fibration C — S,

L X idc : X Xs Ch — Fun((Al)ﬁ,X) Xs Ch

is a cocartesian equivalence in SSet;rS, where the marked edges in Fun((A')%, X) are the
marked squares in X.
(2) For every marked simplicial set X — S and cocartesian fibration C — S,

ichLXidX:uOXSXHhOXSﬁ(S)ﬁ Xg X

18 a homotopy equivalence in sSetj‘S,
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Proof. (1): Because — x g C" preserves cocartesian equivalences, we reduce to the case where C = S.
By definition, X — X xg €(S)! is a cocartesian equivalence if and only if for every cocartesian
fibration Z — S, Mapg(X x5 O0(S)¢,,2) — MapﬁS(X, 4Z) is a trivial Kan fibration. In other words,
for every monomorphism of simplicial sets A — B and cocartesian fibration Z — S, we need to
provide a lift in the following commutative square

B x X | yo x (Af x X) x5 0(S)F 2 12

Lo

(B¥ x X) xg 0(S)f ——s S*

Define hg : 0(S)* x (A1)* — O(S)* to be the adjoint to the map €(S)* — €&(0(S))* obtained
by precomposing by the map of posets A' x Al — A! which sends (1,1) to 1 and the other vertices
to 0. Precomposing ¢ by id4ix x X hg, define a homotopy

h:(A* x X) x5 O0(S)* x (AN — ,Z
from ¢| sy x 0 Pras.x to ¢|(AﬁxX)xSﬁ(S)ﬁ~ Using h and ¢|gs x, define a map
Y B x X | | (4 x X) x5 0(S) — Fun((A")*,,2)
At x X

such that 1|ps, x is adjoint to @|ps.x o Preyx and Y[ asx x)xgo(s): is adjoint to h. Then we
may factor the above square through the trivial fibration Fun((A')f,,Z) — ,Z xg O(S)* to obtain
the commutative rectangle

BE 5 X |4, ¢ (A% x X) xg 6(S)F —2 Fun((AY),,2) -2 7

(Bf x X) x5 O(S)f ———— ,Z x5 O(S)} —— S*.

Bl gty x X 1d

The dotted lift 1;5 exists, and e o ’(Z is our desired lift.
(1°): Repeat the argument of (1) with Fun((A')#, X) in place of &(S).
(2): Let p: C —> S denote the structure map and let P be a lift in the commutative square

.0 —"%— Fun((A")%,0)

T
J P :i(eoﬁ(p»

WO xg O(9)F —— 1C x5 O(S)*.
Let
g=(e1 x idx) o (P xidx):4C x5 O(S) xg X — ,C x5 X.
and note that g is map over S. We claim that g is a marked homotopy inverse of f = idc Xt X idx. By
construction, go f = id. For the other direction, define hg : Fun((A1)¥,,C) x (A!)! — Fun((A1)%,,0)
as the adjoint of the map Fun((A!)*,,C) — Fun((A! x A1)? ,C) obtained by precomposing by the
map of posets Al x Al — A which sends (0, 0) to 0 and the other vertices to 1. Define

h:yC x5 0(S) x5 X x (AN — ,C x5 O(S)* xg X
as the composite ((eg, O(p)) x X) o (hg x X) o (P X idx (a1y:). Then h is a homotopy over S from
idto fog. ]
3.3. Proposition. Let C,C’,D —> S be cocartesian fibrations and let F' : C — C’ be a monomor-
phism. For all marked simplicial sets Y over S, the map

Fung(,D, Fung(;C",Y)) — Fung(yD x5 4C",Y) Xpung(,0x s,¢,v) Fung (D, Fung (,C,Y))

which precomposes by F is a trivial Kan fibration.
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Proof. From the defining adjunction, for all XY € sSet7S we have a natural isomorphism

Fung (X, Fung(,C,Y)) = Fung(X xg O(S)* x5 4C,Y)

of simplicial sets. Since Fung(—, —) is a right Quillen bifunctor, the assertion reduces to showing
that
hD XShC/ |_| hD Xsﬁ(S)ﬁ XsuC‘»hD ><Sﬁ(5)ti XShC/
hDXShC
is a trivial cofibration in sSet}"S, which follows from 3.2 (2). O

In Prp. 3.3, letting C'= () and Y = ,E for another cocartesian fibration E — S, we deduce that
Fung(C, —) is right adjoint to C' xg — as a endofunctor of Fun(S, Cat.,). Further setting D = S, we
deduce that the category of cocartesian sections of Fung(,C,F) is equivalent to Fung(yC, 1E).

3.4. Notation. Given a map f : ;C —> ,E, let s denote the cocartesian section S* — Fung(;,C, ,E)
given by adjointing the map 0(S5)* x5 ;C o, yC ER W
3.5. Lemma. Let C — D be a fibration of marked simplicial sets over S.
(1) Let K — S be a cocartesian fibration. Then
Fung (4K, C) — Fung(;K, D) xp C
s a fibration in sSet;rS.
(2) The map
Fung(S*, C) — Fung(S%, D) xp C
s a trivial fibration in sSeth.
Proof. Let i : A — B be a map of marked simplicial sets. For (1), we use that if i is a trivial

cofibration, then
B| |Axs0(S)! x5 3K — B x5 0(S) x5 K
A

is a trivial cofibration, which follows from Prp. 3.1. For (2), we use that if ¢ is a cofibration, then

B| |Axs 0(S)" — B xs 0(S)
A

is a trivial cofibration, which follows from Lm. 3.2 (1). O

3.6. Proposition. The Quillen adjunction
— x5 O(S)*: sSet}"S pa— sSetj‘S :Fung(S*, —)
is a Quillen equivalence.
Proof. We first check that for every cocartesian fibration C — S, the counit map
Fung(S*,,0) x5 0(S)F — ,C
is a cocartesian equivalence. By Lm. 3.2(1), it suffices to show that
Fung(S*,,0) — ,C

is a trivial marked fibration, which follows from Lm. 3.5(2) (taking D = S). We now complete
the proof by checking that — x g €@(S)* reflects cocartesian equivalences: i.e., given the commutative
square

A B

l |

AxgO(S) — B xg O(S)".

if the lower horizontal map is a cocartesian equivalence over S (with respect to the target map) then
the upper horizontal map is a cocartesian equivalence over S. But the vertical maps are cocartesian
equivalences by Lm. 3.2(1). O
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The construction Fung(—, —) does not make homotopical sense when the first variable is not fibrant,
so it does not yield a Quillen bifunctor. Nevertheless, we can say the following about varying the first
variable.

3.7. Proposition. Let K, L, and C be fibrant marked simplicial sets over S, let f : K — L be a
map and let
fre @S(Lac) - mS(Kv C)
denote the induced map.

(1) Suppose that K — L is a cocartesian equivalence over S. Then f* is a cocartesian equivalence
over S.
(2) Suppose that K —> L is a cofibration. Then f* is a fibration in sSetj‘S,
Proof. (1): Tt suffices to check that for all s € S, f* induces a categorical equivalence between the
fibers over s, i.e. that
Fung((S*/)f x5 L,C) — Fung((5*/)* xs K,C)

is a categorical equivalence. Our assumption implies that (S/)fx ¢ K — (S*/)#x gL is a cocartesian
equivalence over .S, so this holds.
(2): For any trivial cofibration A — B in sSet};, we need to check that
AxgO(S) xs L |_| Bx50(S)xs K — Bxg50(S)xs L
Ax S ﬁ(S) X sK
is a trivial cofibration in sSet;rS. By Prp. 3.1, — xg 0(S) xg K preserves trivial cofibrations and
ditto for L. The result then follows. ]

A final word on notation: since Fung(—,—) is only well-defined and fibrant when both variables
are fibrant, we will henceforth cease to denote the markings on the variables.

S-categories of S-objects. For the convenience of the reader, we briefly review the construction
and basic properties of the S-category of S-objects in an oco-category C. This material is originally
due to D. Nardin in [2, §7].

3.8. Construction. The span

5 & g(8)F —— AD
defines a right Quillen functor sSet™ — sSetj‘S7 which sends an co-category E to Fung(&(S), E x S).
This is the S-category of objects in E, which we will denote by Eg.

cocart

The next proposition shows that the functor E' — Eg implements the right adjoint to Cat’s" — Cateo
at the level of cocartesian fibrations.
3.9. Proposition. Suppose C' a S-category and E an oco-category. Then we have an equivalence

¥ : Fung(C, Eg) = Fun(C, E)

Proof. Consider the commutative diagram

C~ — O(S)" — AP

|

C —— S

AO
Given an co-category E, travelling along the outer span yields Fun(C, E), travelling along the two inner
spans yields Fung(C, Eg), and the comparison functor ¢ is induced by the map ¢ : C~ — ,C'x g ﬁ(S)h.
By [2, 6.2], ¢ is a homotopy equivalence in sSet;rS. Therefore, combining Lm. 2.26 and Lm. 2.27, we
deduce the claim. |
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3.10. Example. Let F = Top or Cat,,. Then TopS resp. Cat, ¢ is the S-category of S-spaces

resp. S-categories. In particular, suppose E = Top and S = O. Then we also call Top., the

- UG
G-oo-category of G-spaces. Note that the fiber of this cocartesian fibration over a transitive G-set
G/H is equivalent to the co-category of H-spaces Fun(O, Top), and the pushforward functors are
given by restriction along a subgroup and conjugation.

4. JOIN AND SLICE

The join and slice constructions are at the heart of the oco-categorical approach to limits and col-
imits. In this section, we introduce relative join and slice constructions and explore their homotopical
properties.

The S-join.
4.1. Definition. Let ¢ : S x A" — § x A! be the inclusion. Define the S-join to be the functor
(—*s —) =ty : sSet /g o1 —> sSet gy ar.

Define the marked S-join to be the functor

+

(— x5 —) = L« :sSet/SﬁX(8Al +

p sSet/Sﬁx(Al),,.

4.2. Notation. Given X,Y marked simplicial sets over S, we will usually refer to the structure maps
toSbym : X — S5 m:Y — S and7: X*xsY — S. Explicitly, a _(z'—l—j—!—l)—simplex Aof X xgY
is the data of simplices 0 : A* — X, 7: A — Y and mo X : A* x A7 — § such that the diagram

Al —> AT s AT — AT

N

™1 ™2

X S Y

commutes. We will sometimes write A = (o, 7) so as to remember the data of the i-simplex of X and
the j-simplex of Y in the notation. If given an n-simplex of X xgY ', we will indicate the decomposition
of A™ given by the structure map to Al as A" x A™ (with either side possibly empty).

4.3. Proposition. Let 1 : S x A — S x Al be the inclusion. Then

(a) i : sSet guonr —> sSet g a1 is a right Quillen functor.
(b) ts: sSet;rSuX(aAl),, — sSethuX(Al),, is a right Quillen functor.

Consequently, if X and Y are categorical resp. cocartesian fibrations over S, then X *xsY is a
categorical Tesp. cocartesian fibration over S, with the cocartesian edges given by those in X and Y.

Proof. For (b), we verify the hypotheses of Thm. 2.23. All of the requirements are immediate except
for (1) and (2).

(1): Let (s,4) be a vertex of S* x (A", i =0or 1. Let f: (s',i') —> (s,4) be a marked edge in
S% x (A')?. Then i =i and f viewed as an edge in S* x (OA!)" is locally t-cartesian.

(2): Tt is obvious that OA! — Al is a flat categorical fibration, so by stability of flat categorical
fibrations under base change, S x A — S x Al is a flat categorical fibration.

(a) also follows from (2) by [11, B.4.5]. By (a), if X and Y are categorical fibrations over S, X xsY’
is a categorical fibration over S x A'. The projection map S x Al — S is a categorical fibration,
so X x5 Y is also a categorical fibration over S. By (b), if X and Y are cocartesian fibrations over

S, 1 X x5 Y is fibrant in SSet;rSuX(Al)b. Since S* x (A')? is marked as a cocartesian fibration over S,
1 X *s 1Y is marked as a cocartesian fibration over S. O

We have the compatibility of the relative join with base change.

4.4. Lemma. Let f: T —> S be a functor and let X and'Y be (marked) simplicial sets over S. Then
we have a canonical isomorphism

(XxsY)xs T2 (X xgT)*p (Y xgT).
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Proof. From the pullback square
T x OA' -5 T x Al

ifxid ifxid
S x A 25 S x Al
we obtain the base-change isomorphism f*(ts)« = (1)« f™*. O

In [9, §4.2.2], Lurie introduces the relative ‘diamond’ join operation ¢g, which we now recall. Given
X and Y marked simplicial sets over S, define

XosY =X Uxxgyxfoy X XsY X (Aly Uxxsyx{1} Y-
There is a comparison map ¥(xy) : X 05 Y — X x5 Y = 1,(X,Y), adjoint to the isomorphism
(X x5 Y) 2 (X,Y).
4.5. Lemma. ¢x g5) : X og St — X xg S* is a cocartesian equivalence in sSeth. Dually, if X is
fibrant, then s x) is a cocartesian equivalence in sSetj‘S.
Proof. We first address the map 9 (x,s). By left properness of the cocartesian model structure, the
defining pushout for X ¢g S is a homotopy pushout. By Thm. 4.16, — xg S preserves cocartesian

equivalences. Therefore, choosing a fibrant replacement for X and using naturality of the comparison
map ¥ (x,s), we may reduce to the case that X is fibrant. Then we have to check that

X x {1} — X x (A"

| !

St X xg S*

is a homotopy pushout square. Since this is a square of fibrant objects, this assertion can be checked
fiberwise, in which case it reduces to the equivalence X, o A? = X™ of [9, 4.2.1.2].
The second statement concerning g, x) follows by the same type of argument. O

4.6. Warning. In general, 1(x y) is not a cocartesian equivalence. As a counterexample, consider

S = Al X = {0}, and Y = {1}. Then Y(x,y) is the inclusion of X og Y = A 1 AT into
X %g Y =2 Al which is not a cocartesian equivalence over Al.

We will later need the following strengthening of the conclusion of Prp. 4.3.

4.7. Proposition. (1) Let C,C',D — S be inner fibrations and let C;C’" — D be functors.
Then C xp C' — S is an inner fibration.
(2) Let C,C",D —> S be S-categories and let C,C' — D be S-functors. Then C xp C' — S
is a S-category with cocartesian edges given by those in C or C', and C xp C' — D 1is a
S-functor.

Proof. (1) Let 0 < k < n. We need to solve the lifting problem

AP 2% Cap O

]

A" S.

If Ao lands entirely in C' or C’, then we are done by assumption, so suppose not. Let X :
A™ — D be a lift in the commutative square

Ap — D

Ve

A" — S,
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Define X using the data (Ag|aro, Aolani, A). Then X is a valid lift.
(2) Consider C xp C' as a marked simplicial set with marked edges those in ;C or in yC’. We
need to solve the lifting problem

A
A = Cxp C'

A —— 5.

Again, if Ao lands entirely in C' or C’, then we are done by assumption, so suppose not (so
that n > 2 and the marked edge lies in C). Let A : A" — D be a lift in the commutative
square

AG — 4D

v

AT — S,
Define ) using the data (Ag|ano, Ao|ani, A). Then A is a valid lift. Finally, note that we may
obviously lift against classes (3) and (4) of [9, 3.1.1.1]. We conclude that C xp C' — S is

fibrant in sSetj‘S, hence an S-category with cocartesian edges as marked.
|

Since the S-join is defined as a right Kan extension, it is simple to map into. In the other direction,
we can offer the following lemma.

4.8. Lemma. Let C, C', D, and E be S-categories and let C,C’" —s D be S-functors. Then
Fung(C xp €', E) — Fung(C, E) x Fung(C', E)
is a bifibration (Dfn. [9, 2.4.7.2]). Consequently,

Fung(C xp C', E) — Fung(C, E)
is a cartesian fibration with cartesian edges those sent to equivalences in Fung(C’, E), and

Fung(C xp C', E) — Fung(C’, E)
is a cocartesian fibration with cocartesian edges those sent to equivalences in Fung(C’, E).
Proof. By inspection, the span

(A1 & ,(Cxp C1) =5 S

satisfies the hypotheses of Thm. 2.23. Therefore, . 7" (,E — S) is a categorical fibration over A
The claim now follows from [9, 2.4.7.10], and the consequence from [9, 2.4.7.5] and its opposite. [

The Quillen adjunction between S-join and S-slice. Our next goal is to obtain a relative join
and slice Quillen adjunction. To this end, we need a good understanding of the combinatorics of the
relative join (Prp. 4.11). We prepare for the proof of that proposition with a few lemmas.

4.9. Lemma. Leti,l > —1 and j,k > 0. Then
Al % AV x AR % Al |_| AR+ ATt h+3
AT kAR xAL
is inmer anodyne.
Proof. Let f: AJ™" — A"« A7=1 and g : AET? — A*+1. The map in question is f x g« Al, so is
inner anodyne by [9, 2.1.2.3]. |

By [9, 2.1.2.4], the join of a left anodyne map and an inclusion is left anodyne. We need a slight
refinement of this result:

4.10. Lemma. Let f: Ay — A be a cofibration of simplicial sets.
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(1) Let g : By — B be a right marked anodyne map between marked simplicial sets. Then
f"*g:A%*B |_| A® % By — A« B
Ab*Bo
1 a right marked anodyne map.
(2) Let g: By —> B be a left marked anodyne map between marked simplicial sets. Then

gxf :BxAy | | Byx A" — Bx A
BO*AE

s a left marked anodyne map.

Proof. We prove (1); the dual assertion (2) is proven by a similar argument. f lies in the weakly
saturated closure of the inclusions i,, : JA™ — A™, so it suffices to check that i’ * g is right
marked anodyne for the four classes of morphisms enumerated in [9, 3.1.1.1]. For g : (A?)” — (A™)",
0<i<n, z?n * g obtained from an inner anodyne map by marking common edges, so is marked right
anodyne. For g : A7% —» A8 % 4 g is AZimﬁu s AnmLE g i® % g is marked right anodyne.
For the remaining two classes, z?n * g is the identity because no markings are introduced when joining

two marked simplicial sets. (Il

The following proposition reveals a basic asymmetry of the relative join, which is related to our
choice of cocartesian fibrations to model functors.

4.11. Proposition. Let K be a marked simplicial set over S.

(1) For every yAf — yA™ a map of marked simplicial sets over S,
K*S (hAg X5 ﬁ(S)h) — K*S (hAn XS ﬁ(S)h)

is left marked anodyne, where the pullbacks yAf X g ﬁ(S)tl and yA"™ Xg ﬁ(S)tl are formed
with respect to the source map ey and are regarded as marked simplicial sets over S wvia the
target map e;y.
(1) For every A} —> A™ a map of simplicial sets over S,

A" xs0(S) || Kxs(Af xs0(S)) — Kxs (A" x5 0(S))
Ang(j(S)

18 an inner anodyne map.
(2) Leteg: C —> S be a cartesian fibration over S and let e; : C —> S be any map of simplicial
sets. For every A} — A", 0 <k <mn a map of simplicial sets over S,

K*S (AZ Xsc) —»K*S (An Xsc)

is inner anodyne, where the pullbacks A} x5 C and A™ xg C' are formed with respect to eg
and are regarded as simplicial sets over S via e;.
(3) For every A" —> A" 4 map of simplicial sets over S,

K*S Azh —> K*S Anh
18 right marked anodyne.

Proof. Let I be the set of simplices of K endowed with a total order such that o < ¢’ if the dimension
of o is less than that of ¢/, where we view the empty set as a simplex of dimension —1. Let J be the
set of epimorphisms y : A7 — A"~! endowed with a total order such that y < x’ if the dimension
of x is less than that of x’. Order I x J by (0,x) < (¢/,X') if 0 < ¢’ or 0 = ¢’ and x < x’. For any
simplex 7 : A7 — A" we let r1(7) be the pullback

Are(mo ) An-1

| s

A —T 5 AR
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We will let ¢ denote the map under consideration. We first prove (1). Given o € I and x € J, let
Xo,x be the sub-marked simplicial set of K xg (;A" X5 ﬁ(S)h) on K *g (4A§ Xg ﬁ(S)h) and simplices
(o', ") : A" x A7 — K x5 (A" xg 0(S)) not in K xg (A} xg 0(S)) with (¢/,79(eg 0 7)) < (0,%x). If
(o,x) < (¢/,x’), then we have an obvious inclusion X, , — X,/ s, and we let

X<(U,X) = (hA(T)L X5 ﬁ(S)h) U(U(U',X')<(O’;X)X‘77X)'

Since K xg (;A™ X g 09" = colim(, yyerx s Xo,y, in order to show that ¢ is left marked anodyne
it suffices to show that X_(, ) — X, is left marked anodyne for all (o,x) € I x J. We will say
that a simplex of X, , is new if it does not belong to X (4 y)-

Let 0 : A® — K be an element of I and x : A7 — A""! an element of J. Let A = (0,7) :
AP % AV — K xg (A" xg 0(S)) be any nondegenerate new simplex of X, \, so ro(eg o 7) = x. Let
X : A7t A" be the unique epimorphism with ro(Y) = x and let e : Al — A" x5 0(S) be a
cartesian edge over {0,1} with e(1) = 7(0). The inclusion (AY)#| |x0 AT — ;AJT! is right marked
anodyne, so we have a lift 7 in the following diagram

TUe

Al |0 A T2 AR x5 6(S)

[

AL X Am

By Lm. 4.10,
AT A | [pATT — AT AT
PN
is right marked anodyne. Using that (e; o 7)(e) is an equivalence, we obtain a lift

TAUeT

AT % AT |5y AT — 5

A % AT

which allows us to define A : A’ x A7*! — K xg (A" x5 0(S)) extending X and 7. Then X is
nondegenerate and every face of A except for A = d;y1()) lies in X, ). We may thus form the
pushout

i+j+2 . .
I_l)\(Aziler 7{7’ + 177’ + 2}) - X<(<7,x)

l

LA™+ {i+1,i 4+ 2}) — Xc(op01

which factors the inclusion X, ) — X(5,y) as the composition of a left marked anodyne map
and an inclusion (there is one further complication involving markings: in the special case n = 1,
o =10, 7 =1, we may have that A\ = 7 is a marked edge, i.e. an equivalence over 1. Then the edges
of 7 are all marked, so we should form the pushout via maps (A2)* — (A2)¥, which are left marked
anodyne by [9, 3.1.1.7]).

Now for the inductive step suppose that we have defined a sequence of left marked anodyne maps

Xeop) — -+ — Xc(opm C X(ox)

such that for all 0 < I < m all new nondegenerate simplices in X(, ) of dimension i + [ + j lie in
X<(ox), and admit an extension to a i 4 + j 4 1-simplex with the edge {i + 1,7+ 4 1} marked in
X <(ox),1>» and no new nondegenerate simplices of dimension > i 4 j +1 lie in X (4,y),. Let A = (o, 7)
be any new nondegenerate i + m + j + 1-simplex not in X (5 y) m. For 0 <1 <mlet \; = (0,7;) be a
nondegenerate i +m+j+1-simplex in X (4,y),m With dim (A1) = diyi41(N) and edge {i+m,i+m+1}
marked. 7 and 79, ..., T;,—1 together define a map

AT R AT S AT X g O(S)
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where the domain of 7 is the subset {0,...,m —1,m+1,...,m + j + 1} and the domain of 7; is the

~

subset {0, ...,1,...,m+j + 1}. Observe that the map Aﬁﬁh K AT AmH1E AT g right marked
anodyne, since it factors as

AP AT AT || AR AT AT AT

m+1 b
A'm+1

where the first map is obtained as the pushout of the right marked anodyne map Amﬁh — AmH1f

along the inclusion Azﬁh — Azﬂh *x AJ~1 and the second map is obtained by marking a common
edge of an inner anodyne map. Let Yy : A™T/+1 . A" be the unique epimorphism with ro(Y) = x.
Then we have a lift 7 in the following commutative diagram

AT AT T AR g 6(8)

P

Am+1 * Aj?.‘i X A"

By Lm. 4.10, the map

A AR AT ] AT AT AT AT AT
Apiiteadi—t
is right marked anodyne. Since (e; o 7)({m, m + 1}) is an equivalence, we may extend (U;m)\;) U
TAUerT to a map A™mHi+2 _, G which defines a nondegenerate (i +m + j + 2)-simplex A with A

as its (i +m + 1)th face and which extends 7. By construction every other face of X lies in X<(ox)m-
Thus we may form the pushout

UnAm 2 i+ m+ 1Li+m+2}) — X(opom

LIy (A2 fi 4 m + 1 i+ m+2}) — X (ox0,m+1

and complete the inductive step (again, there is one further complication involving markings: in
the special case : = —1, n = 1, 7 = 0, m = 1, we may have that A is marked. Then every edge of
A is marked since (A2)¥ — (A2)f is right marked anodyne, and we form the pushout along maps
(A?)* — (A?)*). Passing to the colimit, we deduce that X_(, ) — X, is marked left anodyne,
which completes the proof.

For (1), simply observe that if ¢ > —1 we are attaching along inner horns.

We now modify the above proof to prove (2). Let X, , be the sub-simplicial set of K xg (A" xgC)
on K xg (A7 xg C) and simplices (0/,7") : A" x AT — K x5 (A" x5 C) not in K x5 (A} xg C) with
(0',ri(eo o 7)) < (0,x). Let Xe(gy) = (K x (A} x5 C)) U(U(o )< (0:) Xo,x)- We will show that
X< (orx) — Xo,y is inner anodyne for all (o, x) € I x J.

Let 0 : A" —> K be an element of I, ¥ : A7 — A™"! an element of J, and let k' be the first
vertex of x with x (k') = k. Let A = (0,7) : Al x AJ — K %g (A™ x5 C) be any nondegenerate new
simplex of X, ,, so ri(ego7) = x. Let x : A" — A" be the unique epimorphism with rj () = x.
Combining [9, 2.1.2.3] and Lm. 4.10, we see that the inclusion

dp s A = AP L ATTF L AR AT

is right marked anodyne, so we have a lift 7 in the following diagram

A —"5 A" xgC

RS

Aj+1"“ X, An
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where 7({k’,k’ + 1}) is a cartesian edge. By Lm. 4.9, A x AJ| |, AIT1 — A% ATT! s inner
anodyne. We thus obtain an extension

TAUelT

A x N |y, AT ST S

l

A AT

which allows us to define A : A" x AT — K xg (A" xg C) extending A and 7. Then X is
nondegenerate and every face of A except for A = dj 1 1(A) lies in X, ). We may thus form the
pushout

i+j+2
I_IA Ai+k’+1 > X<(<f,x)

LA™+ — X500

which factors the inclusion X (4 ) — X(5,y) as the composition of an inner anodyne map and an

inclusion.
Now for the inductive step suppose that we have defined a sequence of inner anodyne maps

Xc(op) = = — X<(op)m C X(ox)

such that for all 0 < I < m all new nondegenerate simplices in X(, ) of dimension i + [ + j lie in
X< (ox), and admit an extension to a i + 1+ j + 1-simplex such that the edge {i + & +1,i+k +1+1}
is sent to a cartesian edge of A™ x g C', and no new nondegenerate simplices of dimension > 7 + j +{
lie in X (4, Let A = (o,7) be any new nondegenerate i +m + j 4 1-simplex not in X (5 1) m- For
0 <l<mlet \; = (0,7) be a nondegenerate i +m + j 4 1-simplex in X (4,),m With diymyr (X)) =
diti+k+1(N). 7 and 79, ..., Tm—1 together define a map

T AR TR AT A AR L L A < O
where the domain of 7 is the subset {0, ...k + m—1,k'+m+1,....,m+j + 1} and the domain of
7; is the subset {0, ...,k +1,....m+ j + 1}. The map

’ . ’ ’ . ’
Ak —1 *Azi%u *A]—k -1 Ak -1 *Am—i-lh *Aj_k -1

is AF -1 joined with a right marked anodyne map, so is right marked anodyne by Lm. 4.10. Let
X : AmFTi+l . A" be the unique epimorphism with r; () = x. Then we have a lift 7 in the following
commutative diagram

’
’ . ’ T
AF L AT R AR L T AR x g ©

o

Am+j+1 An

such that 7({k¥" +m, k' + m 4+ 1}) is a cartesian edge. By Lemma 4.9, the map

AT AF L5 GA™ 5 ATH | | AL, AFEmA2
AR =1 A AT—K
is inner anodyne. Therefore, we may extend (U;mA;) UTAUei7 to a map AT HI+2 S which
defines a nondegenerate (i + m + j + 2)-simplex A with X as its (i + &’ + m + 1)th face and which
extends 7. By construction every other face of A lies in X (5 y)m- Thus we may form the pushout

i+m+j+2
|_|/\ Ai+k’+m+1 X<(17X),m

R
LIy A2 — X (5 ) mt1
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and complete the inductive step. Passing to the colimit, we deduce that X () — X;  is inner
anodyne, which completes the proof.

We finally modify the above proof to prove (3). Given ¢ € I and x € J, let X, , be the sub-
marked simplicial set of K xg A" on K *g AZh and simplices (0/,7') : Al x AJ — K *g A™ not in
K %5 A" with (o/,7,(7")) < (o, x). Let Xc(oy) = (K *s Azh)U(U(a’,x’)<(a,x)XU,x)~ We will show
that X, ) — Xo,y is right marked anodyne for all (o,x) € I x J.

Let 0 : A® — K be an element of I and x : A7 — A""! an element of J. Let A = (0,7) :
A'xAJ —> KxgA™ be any nondegenerate new simplex of X, ,, 50 7 = 7, (7) = x. Let ¥ : A/t — A"
be the unique epimorphism with r, (%) = x. By Lm. 4.9, the inclusion

A AT | AT AT AT
Ad
is inner anodyne, so we have an extension in the following diagram

TAU T2 X

A% AT | |5 AT ——'S

|

Ai*Aj“v.

which allows us to define A : AP x ATF! — K xg A" extending A and ¥. Then X is nondegenerate
and every face of A except for A = d;1j12()\) lies in X (,). We may thus form the pushout

it+j+2b
Ly Ai+§'+2 - X<I7,x)

i+j420
LI\ A28 — X (500

which factors the inclusion X, ,) — X(s,y) as the composition of a right marked anodyne map
and an inclusion.
Now for the inductive step suppose that we have defined a sequence of right marked anodyne maps

Xc(op) = = X<(o)m C X(ox)

such that for all 0 < I < m all new nondegenerate simplices in X(, ) of dimension i + [ + j lie in
X< (o), and admit an extension to a i + [ + j + 1-simplex, and no new nondegenerate simplices of
dimension > i+ j +1 lie in X_(, ). Let A = (o, 7) be any new nondegenerate i +m + j + I-simplex
not in X<, y)m. For 0 <1 <mlet \; = (0,7) be a nondegenerate i +m + j + 1-simplex in X (5 y),m
with ditm4j+1(AN) = digjr141(A) (note that 7; = 7). By Lm. 4.9, the map

A XN OA™ | | A« A" — AT AT X AT
AJxdA™
is inner anodyne. Therefore, we may extend A U (U;w);) to a map AHI+m+2 . G and define a
(i + 7 +m + 2)-simplex X of K * A™ with di\jimyoA = A and diy 41012 = A + . By construction
every face of A except for A lies in X (5 ) m- Thus we may form the pushout

L, Ai+j+m+2h

itjamie — X<(o

X),m

i+ ;
I_l)\ Az+]+m+2 _ X<(o-,x),m+1

and complete the inductive step. Passing to the colimit, we deduce that X, ) — Xo  is right
marked anodyne, which completes the proof.
a

4.12. Remark. The proof of Proposition 4.11 can be adapted to show that for any cartesian fibration
C — S, 1Al Xg ch — pA" X g C" is marked left anodyne (in the o = () case, we only use that
O(S) — S is a cartesian fibration). As well, letting K = (), part (2) of Proposition 4.11 shows that
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A} x5 C — A" xg C is inner anodyne. This refines the theorem that marked left anodyne maps
resp. inner anodyne maps pullback to cocartesian equivalences resp. categorical equivalences along
cartesian fibrations.

For later use, we state a criterion for showing that a functor is left Quillen.

4.13. Lemma. Let .# and A be model categories and let F' : M — N be a functor which preserves
cofibrations. Let I be a weakly saturated subset of the trivial cofibrations in A such that for every
object A € M, we have a map [ : A — A" where f € I and A’ is fibrant. Then F preserves trivial
cofibrations if and only if

(1) For every f € I, F(f) is a trivial cofibration.

(2) F preserves trivial cofibrations between fibrant objects.

Proof. The ‘only if’ direction is obvious. For the other direction, let A — B be a trivial cofibration
in .. We may form the diagram

A B
|
A — A, B — (AU, B)

where the vertical and lower right horizontal arrows are in I. Then our two assumptions along
with the two-out-of-three property of the weak equivalences shows that F(A) — F(B) is a trivial
cofibration. 0

4.14. Lemma. Let K be a simplicial set over S. Then
K x5 —,—%s K : sSet;5 — sSetg/ /g
are left adjoints. Similarly, for K a marked simplicial set over S,
Kxg—,—*s K : sSet;rS — sSet}//S
are left adjoints.
Proof. We will prove that K xg — is a left adjoint in the unmarked case and leave the other cases to

the reader. Let F' denote K xg— and define a functor G : sSety /g — sSet g by letting G(K — C)
be the simplicial set over S which satisfies

Hom,5(A", G(K — C)) = Homg,/s(K x5 A", C);
this is evidently natural in K — C. Define a unit map 7 : id — GF on objects X by sending
og: A" — X to K g0 : K xg A" — K xg X, which corresponds to A" — G(K xg X). Define a
counit map 7 : FG — id on objects K — C by sending A = (0,7) : A'x AV — K x5 G(K — C)
to A7 x AF 21D, K xg A N C, where 7/ corresponds to 7 : A — G(K — C). Then it is
straightforward to verify the triangle identities, so F' is adjoint to G. O

For the following pair of results, endow sSetj‘S with the cocartesian model structure and sSet} e

(sSeth) K, with the model structure created by the forgetful functor to sSet;rS.

4.15. Theorem. Let K be a marked simplicial set over S. The functor
K xg (— x5 O(8)%) : sSeth — SSet;//S
is left Quillen.

Proof. We will denote the functor in question by F'. First observe that F' is the composite of the three
left adjoints ef, e1y, and K g —, so F' is a left adjoint. F' evidently preserve cofibrations, so it only
remains to check that F' preserves the trivial cofibrations. We first verify that F' preserves the left
marked anodyne maps. Since F' preserves colimits it suffices to check that F' preserves a collection of
morphisms which generate the left marked anodyne maps as a weakly saturated class. We verify that
F preserves the four classes of maps enumerated in [9, 3.1.1.1].
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(1): For ¢ : (A})” — (A™)", 0 < k < n, the underlying map of simplicial sets of F(¢) is inner
anodyne by Proposition 4.11. F(¢) is obtained by marking common edges of an inner anodyne map,
so is left marked anodyne.

(2): For ¢ : tAf —> A", we observe that the map

K #s (A} x5 6(S)") | ] K x5 (;A" x5 6(9)") — K x5 (;A" x5 0(S))
Kxs(yAf xs0(5)")

in the case n = 1 is marked left anodyne, since every marked edge in the codomain factors as a
composite of two marked edges in the domain, and is the identity if n > 1. It thus suffices to show
that K *g (,Af xs ﬁ(S’)h) — K x5 (;A" xg 0(9)") is left marked anodyne, which is the content of
part 1 of 4.11.

(3) and (4): In both of these cases one has a map of marked simplicial sets A —> B whose underlying
map is an isomorphism of simplicial sets. Then

A—> F(A

)
|

B —> F(B)

is a pushout square, so F(A) — F(B) is left marked anodyne if A — B is.

Next, let f : yC — yD be a cocartesian equivalence between cocartesian fibrations over S. Let
g : 4D — ;C be a homotopy inverse of f, so that there exists a homotopy h : ;C x (A)¥ — ,C over
S from idc to g o f. Define a map

¢ (K xs (1€ x5 O(3)%)) x (A1)F — K x5 ((:C x5 O(5)F) x (A1)

by sending a (i + j + 1)-simplex (), a) given by the data 0 : A" — K, 7: AV — C x5 O(9)F,
moX: AT L AL o AL 5 Al to a i + j + 1-simplex ) given by the data o, (7, 0 1),
mo X where ¢ : A7 —> A?x A7 is the inclusion. It is easy to see that ¢ restricts to an isomorphism on
(K x5 (4C x5 0(S)#)) x A, We deduce that F(h) o ¢ is a homotopy from F(g o f) to the identity.
A similar argument concerning a chosen homotopy from f o g to idp shows that F(f) is a cocartesian
equivalence. a

4.16. Theorem. Let K be a marked simplicial set over S. The functor
—xg K : sSet;rS — sSet}r{//S
is left Quillen.

Proof. We first verify that —xg K preserves the four classes of left marked anodyne maps enumerated
in [9, 3.1.1.1]. (1) is handled by the dual of part (2) of Prp. 4.11. (2) is handled by the dual of part
(3) of Prp. 4.11. (3) and (4) are handled as in the proof of Thm. 4.15. Finally, the case of A — B
a cocartesian equivalence between fibrant objects is also handled as in the proof of Thm. 4.15. |

4.17. Definition. Let K,C' — S be marked simplicial sets over S and let p : K — C be a map over
S. Define the marked simplicial set C(,, gy, —> S as the value of the right adjoint to K g (—xs O(S)%)
on K — C — Sin sSet}//S.
S-category. We will refer to C(, s), as a S-undercategory of C.

Dually, define the marked simplicial set C(, sy — S as the value of the right adjoint to — *g
(K x50(8)) on K — C — S in sset;//s. By Thm. 4.16 applied to K xg €0(S)¢, if C — S'is a

S-category, then C/(, 5y — S is a S-category. We will refer to C/(, ) as a S-overcategory of C.

By Thm. 4.15, if C' — S is a S-category, then C(, 5y, — S is a

In the sequel, we will focus our attention on the S-undercategory and leave proofs of the evident
dual assertions to the reader.
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Functoriality in the diagram. We now study the functoriality of the S-undercategory with respect
to the diagram category. Given maps f: K — L and p : L — X of marked simplicial sets over S,
we have an induced map X, 5y, — X(,s,5)/, Which in terms of the functors that X, ¢, and X(,r 5,
represent is given by precomposing L g (A xg O0(S)¥) — X by f xg id.

Recall that for category .# admitting pushouts and a map f : K — L, we have an adjunction

fio ) == My, f*

where fi(K — X) = X | L and f*(L % X) = po f. If # is a model category and My,
M1, are provided with the model structures induced from ., then (fi, f*) is a Quillen adjunction.
Moreover, if .Z is a left proper model category and f is a weak equivalence, then (fi, f*) is a Quillen
equivalence.

4.18. Proposition. Let f : K — L be a cocartesian equivalence in sSetj‘S. Let C be a S-category
and let p : L — 4C be a map. Then C(, 5y, — 1C(py,5)/ 18 a cocartesian equivalence in sSet/+S.

Proof. Let F = fio (K %5 (— x5 0(S)%)) and let F' = Lxs (— x5 0(S)*). Let G and G’ be the right
adjoints to F' and F’, respectively. Let o : ' —> F’ be the evident natural transformation and let

B : G — G be the dual natural transformation, defined by G’ tet qrar S arar S5 G
Then B¢ : 4Cp,5), — tC(pf,s), is the map under consideration. By Thm. 4.16, ax is a cocartesian
equivalence for all X € sSet}"S. Therefore, by [7, 1.4.4(b)], B¢ is a cocartesian equivalence. O

4.19. Proposition. Consider a commutative diagram of marked simplicial sets

K—C

| s

L— D
where 1 is a cofibration and q is a fibration.
(1) The map

Cin,5)) — Cpi,8)/ X Diypi,s)) Plap.s)/

s a fibration.
(2) Let K =0 and D = S*. Then the map

Cp.5)/ — Clpis)y = Fung (5%, )
is a left fibration (of the underlying simplicial sets).

Proof. (1): Given a trivial cofibration A — B, we need to solve lifting problems of the form

Lxs (Axg 0(S)) Ukssaxsocs)n K *s (B xs O(S)F) — C

N

Lxs (B x5 0(S)) — D

But the lefthand map is a trivial cofibration by Thm. 4.15.
(2): We need to solve lifting problems of the form

K*S ((An)b X5 ﬁ(S)u) S

(A") x5 O(S)F Uapy K *s (M) x5 O(S)F) — C

where 0 < ¢ < n. But the lefthand map is a trivial cofibration by Prp. 4.11 (1’) and (2). O
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Combining (2) of the above proposition with Lm. 3.5 (2) (which supplies a trivial marked fibration
Fung(S*,C) — C), we obtain a map C(p,s), — C which is a marked fibration and a left fibration,
and such that for any f: K — L, the triangle

Cin,9)/ Cins,s)/

comimutes.

The universal mapping property of the S-slice. Because the S-join and slice Quillen adjunction
is not simplicial, we do not immediately obtain a universal mapping property characterizing the S-
slice. Our goal in this subsection is to supply such a universal mapping property (Prp. 4.25). We first
digress in order to recall how to slice Quillen bifunctors. Suppose ¥ is a closed symmetric monoidal
category and . is enriched, tensored, and cotensored over ¥". Denote the internal hom by

Hom(—, =) : AP X M — V.
Define bifunctors
Hom, (=, =) : M) X M) — V'
Hom /,(—,—): ////Of X My —V
on objects f:x — a,g:x — band f' :a — x,¢ : b —> x to be pullbacks

mm/(fa ) e HOHI( b) m/m(flvg/) - m(aa b)

L e T,

Hom(z, b) 1 Hom(a, z)

and on morphisms in the obvious way (we abusively denote by g : 1 — Hom(xz,b) the map
corresponding to g under the natural isomorphisms Hom(1, Fun(z,b)) = Hom(1 ® z,b) = Hom(z, b),
and likewise for f’). It is easy to see that Hom,, , and Hom /. preserve limits separately in each variable.

4.20. Lemma. In the above situation let 4 be a model category and & be a monoidal model category.
If Hom(—, —) is a right Quillen bifunctor, then Hom,,(—,—) and Hom (-, —) are right Quillen
bifunctors, where we endow M, and M, with the model structures created by the forgetful functor

to M .

Proof. We prove the assertion for Hom,,(—,—), the proof for Hom ,(—,—) being identical. Let
i:a— band f:c— dbe morphisms in .#,, (so they are compatible with the structure maps
Ta, -, Tq). In the commutative diagram

Hom, ,(my, 7c) Hom(b, c¢)

|

f
Horngc/(Tra,ﬂ'C xHomT(ﬂmﬂd) Hom, (7rb,7rd) — Hom(a, ¢) XHom(a,4) Hom(b, d)
1

Hom(z, ¢)

it is easy to see that the lower square and the rectangle are pullback squares, so the upper square
is a pullback square. It is now clear that if Hom(—, —) is a right Quillen bifunctor, then Hom /(7, =)
is as well. (]

We apply 4.20 to the bifunctors
MapK//S(—, =) :sSet}L(//SOP X sSet}//S —> sSetquillen
FunK//s(—, =) :sSet}L(//SOP X sSet}//S —> sSet joyal

induced by Mapg(—, —) and Fung(—, —).
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4.21. Lemma. Let K, A, and B be simplicial sets and define a map
AXx (KxB) — Kx(Ax B)
by sending the data (A" — A, A* — K, A""k=1 _ B) of a n-simplex of A x (K x B) to the
data (A* — K, A" %=1 . A x B) of a n-simplex of K x (A x B). Then
¢: Ax (KxB) |_| K — K% (AXxB)
AXK

is a categorical equivalence.

Proof. Recall ([9, 4.2.1.2]) that there is a map
nxy i XoY =X || XxVYxA' || Y-—XxY
X xY x{0} X XY x{1}
natural in X and Y which is always a categorical equivalence. Thus
f=(Axngp)Uidc : Ax (KoB) | | K—Ax(K*B) | | K
AxXK AxXK
is a categorical equivalence. The domain is isomorphic to K ¢ (A x B), and it is easy to check that
the map 1k, ax B is the composite
Ko(AxB) L Ax(k«B) | | K% Kx(Ax B).
AxXK
Using the 2 out of 3 property of the categorical equivalences, we deduce that ¢ is a categorical

equivalence. O

4.22. Lemma. For all L € sSet/+S, we have a natural equivalence

¢ : Funs (L, ,Cp,s)/) = Fung,//s(K *s (L x5 ﬁ(S)ﬁ), vC).

Proof. Define bisimplicial sets X,Y : A°? —s sSet by
Xy =Mapg,/s(K x5 (A")" x L x5 0(5)*),,C)

Y, = Map(A",Fung,/s(K s (L x5 0(8)%),,0))
> Mapy,/s((A")" x (K xs (L x5 0(S)F) | | K,:0).
(An)> x K
and define a map of bisimplicial sets ® : X — Y by precomposing levelwise by the map
grn (A" x (K x5 (Lxs 0(S)) | | K — Kxs((A") x L x5 0(S)*)
(Am)P x K

adjoint as a map over S x A to the identity over S x 9A!. Taking levelwise zero simplices then defines
the map ¢, which is clearly natural in L, K, and C. By Thm. 4.16, taking a fibrant replacement of
K we may suppose that K is fibrant. We first check that X and Y are complete Segal spaces. Y is
a complete Segal space as it arises from a co-category ([8, 4.12]). For X, since MapK//S(—, —)is a
right Quillen bifunctor, we only have to observe that:

» Every monomorphism A — B of simplicial sets induces a cofibration
K %5 (A° x L x5 0(S)*) — K 5 (B” x L x5 0(8)*)

so X is Reedy fibrant.
» The spine inclusion ¢, : Sp(n) — A™ induces a trivial cofibration

K %5 (Sp(n)’ x L xg O0(S)") — K x5 (A"’ x L x5 0(S)");
Ly, is inner anodyne, so this follows from Thm. 4.15 and [9, 3.1.4.2].
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» The map 7 : E — A® where E is the nerve of the contractible groupoid with two elements
induces a cocartesian equivalence
K %5 (E* X L x5 0(5)") — K x5 (L x5 0(5)%);
7° is a cocartesian equivalence (as the composite of E’ — EY and Ef — A%, so this also
follows from Thm. 4.15 and [9, 3.1.4.2].

We next prove that ¢ is an equivalence in the complete Segal model structure. For this, we will
prove that each map gy, is a cocartesian equivalence in sSeth. Both sides preserves colimits as a
functor of L (valued in sSet} /) ), 80 by left properness and the stability of cocartesian equivalences

under filtered colimits we reduce to the case L is an m-simplex with some marking. In particular,
(A™) xg 0(S)* — S is fibrant in SSetjs. By [9, 4.2.4.1] we may check that the square of fibrant
objects

(Am) x K K
| |

(A" x (K *s ((A™) %5 O(S)F)) —— K *s ((A")" x (A™)" x5 6(S)*)

is a homotopy pushout square in the underlying co-category Cat 2% ~ Fun(S, Cat.,), where colimits

are computed objectwise. In other words, we may check that for every s € S, the fiber of the square
over s is a homotopy pushout square in sSet, which holds by Lm. 4.21. Pushing out along the
cofibration (A™)” xg 0(S)* — L xg 0(S)* and using left properness, we deduce that gr,,, is a
cocartesian equivalence. Finally, we invoke [8, 4.11] to deduce that ¢ is a categorical equivalence. [

4.23. Lemma. Let L — S be a cocartesian fibration. Then idg %ty : K*gyL — Kxg (3L X g O(S)%)
is a cocartesian equivalence in sSet}"S.

Proof. By Thm. 4.16, taking a fibrant replacement of K we may suppose that K is fibrant. By 13.4,

it suffices to show that for every s € S, K x LY — K" * (,L x5 (5/%)%) is a marked equivalence in

sSet™. Observe that the cartesian equivalence {s} — (S/%)# pulls back by the cocartesian fibration
L — S* to a marked equivalence LY — L x5 (S/%)%. Then by Thm. 4.15 for S = A%, K" x —
preserves marked equivalences, which concludes the proof. O

4.24. Notation. Let K,C, D be S-categories and let F': K — C, G : K — D be S-functors. Define
Funy,,5(C, D) to be the pullback

@K//S(Ca D) — Fung(C, D)
| |
S 7 Fung(K, D).

Note that by Prp. 3.7, the defining pullback square is a homotopy pullback square if F' is a
monomorphism.

4.25. Proposition. Let K, L,C be S-categories and let p: K — C, q: L — C be S-functors.

(1) We have an equivalence

¢ : Fung(L, Cp,sy/) — Fung, o(K x5 L, C).
(2) We have an equivalence

W s Fung(L, Cy(q,s)) — Funy /5(K x5 L,C)

(8) We have equivalences

¥ ¥,
Fun,o(L,Cp.5y/) —= Fung 1 ,,s(K xs L, C) +=— Fun (K, C)(y.5))-
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Proof. (1): Define the S-functor v as follows: suppose given a marked simplicial set A and a map
A — Fung(L,C, s)/) over S. This is equivalently given by the datum of a map
Fa: el xs (Axs O(8)F xs4L) x5 O(S)) — C
under K and over S. Let
K L] (A x5 O(8)) x5 (4K x5 (,L x5 O(S)F)) — K x5 (A x5 O(S)* x54L x5 O(S)F)
AXsﬁ(S)uXShK

be the map over S x Al adjoint to the identity over S x dA!. Precomposing f4 by this and ¢f, :
L — 4L x5 O(S)? on that factor defines the desired map A — Funy, s(K *s L,C).

Now to check that 1 is an equivalence, we may work fiberwise and combine Lm. 4.22 and Lm.
4.23.

The proof of (2) is by a parallel argument.

(3): We prove that 1), is an equivalence; a parallel argument will work for ¢,. Funy,p,/s(K*sL,C)
fits into a diagram

MKUL//S(K*S L,C) — MK//S(K*S L,C) — @S(K*S L,C)

| el

— Puny s(K||L,C) — Fung(K'[|L,C)

| |

§ 7 Pung(K,C)
in which every square is a pullback square. The map ), is then defined to be the pullback of the map
of spans
Fung(L, Cp,5)/) ——— Fung(L,C) «——— 5

: |

Fung,/g(K s L,C) — Fung,/s(K||L,C) +— S

in which the vertical arrows are equivalences. By Prp. 4.19 and Fung(L,—) being right Quillen,
the top left horizontal arrow is a S-fibration, and by Prp. 3.7, the bottom left horizontal arrow is a
S-fibration. It follows that 1), is an equivalence. O

In light of Prp. 4.25, we have evident ‘alternative’ S-slice S-categories, whose definition more
closely adheres to the intuition that a slice category is a category of extensions.

4.26. Definition. Let p: K — C be a S-functor. We define the alternative S-undercategory
C(p,s)/ = @K//S(K *s S, C)
Similarly, we define the alternative S-overcategory
C/PS) = Funy,/5(S *s K, C).
4.27. Corollary. Letp: K — C and q: L — C be S-functors.
(1) We have equivalences C(p, )/ = @9/ gnd Clq,s) = 0/@8),
(2) We have an equivalence Fun (L, C@®9)/) ~ Fun (XK, C/@5)Y through a natural zig-zag.

Proof. For (1), let L = S and K = S in Prp. 4.25 (1) and (2), respectively. For (2), combine the
preceding (1) and Prp. 4.25 (3). O

4.28. Warning. When S = A°, the alternative S-undercategory C?%)/ = {p} X pun(k,c) Fun(K>, C)
differs from Lurie’s alternative undercategory C?/. However, we have a comparison functor
{p} X Fun(K,C) F\IJD(KD, C) e Cp/

which is a categorical equivalence and which factors through the categorical equivalence C),, — cr/
of [9, 4.2.1.5].
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Slicing over and under S-points. We give a smaller model for slicing over and under S-points in
an S-category C.

4.29. Notation. Suppose C' an S-category. Let Og(C) = FAu;lS(Sx AL, C)=S X ¢(5) O(C) denote the
fiberwise arrow S-category of C. Given an object z € C, let C/% = Os(C)xcz and czl = zxcOs(C).

4.30. Proposition. Let x € C be an object and denote by i, : £ —> C, the x-functor defined by x.
We have natural equivalences of x-categories

C’w/@’im) ~(C/z

C,/ =2 ~ o/

Proof. For any functor S’ — S and S-category C, O5(C) xS’ = 0/ (C xgS"). Therefore, Os(C) x ¢

z = 0,(Cy) Xc, x and likewise for z x¢ O5(C). Changing base to x, we may suppose S = x and
iy =1:8 — C is any S-functor. The identity section S — &'(S) induces a morphism of spans

S —7 Fung(S,C) +—— Fung(S x A1, 0)

| | l

s : C Fung(S x AL, 0)

with the vertical maps equivalences. Taking pullbacks now yields the claim (where we use the isomor-
phism S x5 S =S x Al to identify the upper pullback with the S-slice category in question). O

4.31. Proposition. We have a natural equivalence CE/ ~ C*/ of left fibrations over C.

Proof. Using the marked left anodyne map hA% — hAz and the map of Lm. 2.22 for n = 2, we obtain
a span

Fun(;A?,,C)

~ ~

Fun((A1)E,0) x o1y Fun(AtL2 C) Fun(A{%2} C) x g0.2y Fun(AZ2, S).

Pulling back via {z} Xty — on the left and — X g1,21 S on the right, and using that the inclusion
A0} 5 A2 U,y A is a categorical equivalence, we get

{:E} X {0} Fun(hAQ, hC) X g{1,2} S

ce/ / \‘ co/

5. LIMITS AND COLIMITS

5.1. Definition. Let C' be a S-category and o : S — C be a cocartesian section. We say that o is a
S-initial object if o(s) is an initial object for all objects s € S.

5.2. Definition. Let K and C be S-categories. Let p: K xg S — C be an extension of a S-functor
p: K — C. From the commutativity of the diagram

S -7 Fung(K x5 S, C)
S LMS(IQC)

we see that o5 defines a cocartesian section of C®9)/ | which we also denote by op. We say that p is
a S-colimit diagram if op is a S-initial object. If P is a S-colimit diagram, then p|g : S —> C is said
to be a S-colimit of p.
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5.3. Remark. In view of the comparison result Cor. 4.27, we could also use the S-slice category
C(p,s), to make the definition of a S-colimit diagram. This would yield some additional generality,
in that C(, ), is defined for an arbitrary marked simplicial set K. However, the construction cwSs)/
is easier to relate to functor categories, which we need to do to show that the left adjoint to the
restriction along K C K *g S computes colimits (a special case of Cor. 9.16).

There are a couple instances where the notion of S-colimit specializes to a notion of ordinary
category theory. For example, we have the following pair of propositions computing S-colimits and
S-limits in an S-category of objects E 4 as left or right Kan extensions in E.

5.4. Proposition. Letp: K xg S — Cg be a S-functor extending p : K — Cg. Suppose further
that a left Kan extension of pt to a functor K xg S —> C' exists. Then the following are equivalent:
(1) D is a S-colimit diagram.
(2) p' is a left Kan extension of p.
(3) D'\ ke is a colimit diagram for all s € S.

Proof. (2) and (3) are equivalent because left Kan extensions along cocartesian fibrations are computed
fiberwise. Suppose (3). To prove (1), we want to show that for every s € S, P, is an initial object
in ((Cg)P9/),. But ((Cg)®%/), is equivalent to the fiber of Fun(Kj x, s,C) — Fun(Kj, C) over
p K, 50 to prove the claim it suffices to show that the functor Pl K, is a left Kan extension of p|g, .
This holds by the equivalence of (2) and (3) for S*/.

Conversely, suppose (1). Since we supposed that a left Kan extension of p! exists, left Kan ex-
tensions of p'|x, all exist and any initial object in the fiber of Fun(K, x s,C) — Fun(K,, C) over
Pt K, is a left Kan extension of Pl K., necessarily a fiberwise colimit diagram (we need this hypothesis

because Kan extensions as defined in [9, §4.3.2] are always pointwise Kan extensions). This implies
(3). |

5.5. Proposition. Letp: Sxg K — Cg be a S-functor extending p : K — Cg. Suppose further
that a right Kan extension of p' to a functor S s K —> C ezists. Then the following are equivalent:
(1) P is a S-limit diagram.
(2) ' is a right Kan extension of p'.
(2°) D'|sx.ic. is a right Kan extension of pf|x, for all s € S.
(3) D' k= is a limit diagram for all s € S.

Proof. We first observe that because the inclusion S — S xg K is left adjoint to the structure map
S xg K —> S of the cocartesian fibration,

(Sxs K)¥ ~ 8% xg (Sxg K) = s, K,.

The equivalence of (2) and (2’) now follows from the formula for a right Kan extension. Also, if we
view K as mapping to S xg K via {s} x K, — s*s K; —> S xg K where the first map is adjoint
to ({s} — s, id), then (2) and (3) are also equivalent by the same argument. Finally, (2’) implies (1)
by definition, and (1) implies (2’) under our additional assumption that a right Kan extension of p'
exists (for the same reason as given in the proof of Prp. 5.4). |

If S is a Kan complex, then the notion of S-colimit reduces to the usual notion of colimit.

5.6. Proposition. Let S be a Kan complex. Then a S-functorp : KxgS — C is a S-colimit diagram
if and only if for every object s € S, D|s : (K)® —> Cs is a colimit diagram.

Proof. If S is a Kan complex, then for every s € S, S%/ is a contractible Kan complex. Therefore, for
all s € S we have (C®9)/); ~ {p,} Xpun(k, c,) Fun(KZ, Cy), which proves the claim. O

We say that K is a constant S-category if it is equivalent to S x L for L an oo-category. We have
an isomorphism L” x § — (L x S) xs S (defined as a map over S x Al to be the adjoint to the
identity on (L x S,.9)).

5.7. Proposition. A S-functorp: L¥ xS — C is a S-colimit diagram if and only if for every object
s€ S, p,: LP — Cy is a colimit diagram.
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Proof. Observe that
(C(p7s)/)s = {pi} ><Funss/ (LxSs/,Cy) FunSS/ (LD X SS/? Cﬁ) = {ps} XFUH(L,CS) Fun(LD, CS)

Therefore, o : S —> CP9)/ is S-initial if and only if for all s € S, {P,} € {ps} XFun(z.c.) Fun(L>, Cy)
is an initial object, which is the claim. |

5.8. Corollary. Suppose C is a S-category such that Cs admits all colimits for every object s € S
and the pushforward functors ay : Cs —> C; preserve all colimits for every morphism o :s —t in S.
Then C admits all S-colimits indexed by constant diagrams.

Proof. First suppose that S has an initial object s. Suppose that p: L x S — C'is a S-functor. Let
Ds : L¥ — C, be a colimit diagram extending p,. Let p: L¥” x S — C be a S-functor corresponding
to ps; under the equivalence Fung(L> x S, C) ~ Fun(L", C;), which we may suppose extends p. By
Prp. 5.7, p is a S-colimit diagram.

The general case now follows from Thm. 9.15, taking ¢ : C — D tobe L x § — S. (]

We now turn to the example of corepresentable fibrations.

5.9. Definition. Let s € S be an object and let K be an S/ -category which is equivalent to a

coproduct of corepresentable fibrations [[,; Sei/ ~ icr Sti/ % S/ for a; : s — t; a collection

of morphisms in S. Let p : K — C xg S* be a S*/-functor, so p selects objects z; € Cy,. Let
P K xgs S — C x5 8% be a $%/-colimit diagram extending p, and let y = p(v) € C, for v = id,
the cone point. Then we say that y is the S-coproduct of {z;};cr along {«;}icr, and we adopt the
notation y =[], ;.

Our choice of terminology is guided by the following result, which shows that a S*/-colimit of a
S5/ _functor p : S/ ~ S/ — C obtains the value of a left adjoint to the pushforward functor a; on
p(t). In the case of S = OF, C = Top,, or SiG, and K = O3, this is the induction or indexed
coproduct functor from H to G.

5.10. Proposition. Let C be a S-category, let o : s — t be a morphism in C, and let 7 : M —> Al be
a cartesian fibration classified by the pushforward functor oy : Cy — Cy. Let p: S¥ — C xg S*/
be a S*/ -functor and let x = p(idy) € C;. Then the data of a S* -colimit diagram extending p yields
a m-cocartesian edge e in M with dy(e) = x and lifting 0 — 1.

Proof. Let p: S xg.) S/ —> C x5 S/ be a §*/-colimit diagram extending p. Let y = p(id,) and
let f': Al — St/ *gs/ 5%/ be the edge connecting id; to a. We may suppose that M is given by the
relative nerve of aq, so that edges in M over Al are given by commutative squares

{1} — C

Lk

Al —— Ct.

Then let e be the edge in M determined by y and f =po f': x = ayy. By definition, dy(e) = x.
We claim that e is m-cocartesian. This holds if and only if for every 3’ € C, the map

Mapcs (y7 y/) - MapCt (1"7 Ol[y/)

induced by f is an equivalence. But the local variant of the adjunction of Thm. 10.4 implies this
(passing to global sections). O

S-coproducts also satisfy a base-change condition. This is awkward to articulate in general, because
the pullback of a corepresentable fibration along another need not be corepresentable. However, if
we impose the additional hypothesis that 77 = S°P admits multipullbacks, then a pullback of a
corepresentable fibration decomposes as a finite coproduct of corepresentable fibrations. In this case,
we have the following useful reformulation of the base-change condition. Let X C &(Fr) be the full
subcategory on those arrows whose source lies in 7" and consider the span

evo

(Fr)* & X 20 78,
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This satisfies the dual of the hypotheses of Thm. 2.23, so C* := (evo)*(evl)*((CV)h) is a cartesian
fibration over Fr (with the cartesian edges marked), where CV — T is the dual cartesian fibra-
tion of [3]. Unwinding the definitions, given a T-set U = [, s;, we have that the fiber (C*)y ~
Funp ([, T/5,CV) ~ 1, Cs,, and given a morphism of T-sets o : U — V, the pullback functor
a* : (C)y — (C*)y is induced by restriction.

5.11. Proposition. C' admits finite S-coproducts if and only if m : C* — Frp is a Beck-Chevalley
fibration, i.e. 7 is both cocartesian and cartesian, and for every pullback square

W - v
[l
U—=>-V

in Fr, the natural transformation

(*) (@B — B

adjoint to the equivalence (8')*a* ~ (a/)*B* is itself an equivalence.

Proof. By Thm. 10.4, C' admits finite S-coproducts if and only if for every finite collection of mor-
phisms {«; : s — t;}, the restriction functor

]_[ozz : Fung(S*/,C)) —> Fung( HSt/C'

admits a left S-adjoint, in which case that left S-adjoint is computed by the S-coproduct along the c;.
This in turn is immediately equivalent to 7 being additionally cocartesian and (*) being an equivalence
for « = [Ja; : [][t: — s and all morphisms 8 : s’ — s in T. Finally, note that the apparently more
general case of (x) being an equivalence for any pullback square is actually determined by this, because
any map a : U = [[t; = V = []s; is the data of f : I — J and {a; : 55 — ti}icp-1(j), whence
o = ()" : [I; Cs; — 11, Gy, ete. yields a decomposition of the map (x) in terms of the ‘basic’
squares that we already handled. O

We conclude this subsection by introducing a bit of useful terminology.

5.12. Definition. Let C be a S-category. We say that C is S-cocomplete if, for every object s € S
and S*/-diagram p: K —> Cs with K small, p admits a S5/ -colimit.

5.13. Remark. Suppose that E is S-cocomplete. Then taking D = S in Thm. 9.15, E admits all
(small) S-colimits. However, the converse may fail: if we suppose that E admits all S-colimits, then
any S*/-diagram Ky — FE; pulled back from a S-diagram K — E admits a 5%/ -colimit; however,
not every S*/-diagram need be of this form.

Vertical opposites. In this subsection we study the vertical opposite construction of [3], with the
goal of justifying our intuition that the theory of S-limits can be recovered from that of S-colimits,
and vice-versa.

5.14. Recollection. Suppose X — T' a cocartesian fibration. Then the simplicial set X P is defined
to have n-simplices

WO(A") — 4 X

of ]

(A™)E —— T,

The forgetful map XV°? — T is a cocartesian fibration with cocartesian edges given by 7 (AL — X
For every t € T, we have an equivalence X/ = X/°” implemented by the map which precomposes
by evg : ;0(A™) — ((A™)°P)° which is an equivalence in sSet™.
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Dually, suppose Y — T a cartesian fibration. Then the simplicial set Y"°P is defined to have
n-simplices

(G(amer) — v+

o

(AmYE — 7%,

and similarly the forgetful map Y"°? —» T is a cartesian fibration with fibers Y;"" < Y,°’. As
a warning, note that the definition of the underlying simplicial set of (—)”°? changes depending on
whether the input is a cocartesian or cartesian fibration.

Define a functor é’(—) : sSetj‘S — sSetj‘S by
0'(AL 8) = (0(A), &) =25 5

where an edge e is in &4 just in case evg(e) is marked in A°?. Note that &(—) preserves colimits

AP, and from this it easily follows that ¢”(—)
also preserves colimits. By the adjoint functor theorem, &”(—) admits a right adjoint, which we label
(—)vP; this agrees with the previously defined (—)"? for cocartesian fibrations ;X — S*.

i it i .. id) P
since it is defined as precomposition by A°P (revid)

5.15. Proposition. The adjunction
0'(-): sSet;rS — sSeth ((—)vop
is a Quillen equivalence with respect to the cocartesian model structure on sSet;rs.

Proof. We first prove the adjunction is Quillen by employing the criterion of Lm. 4.13. Consider the
four classes of maps which generate the left marked anodyne maps:

(1) i: AP — A", 0 < k < n: By [1, 12.15], (A7) — G(A™) is inner anodyne, so & (i) is left
marked anodyne.

(2) i :4Afj —> yA™: We can adapt the proof of [1, 12.16] to show that 0'(i) is a cocartesian equiv-
alence in sSet;rS (even though it fails to be left marked anodyne). The basic fact underlying
this is that a right marked anodyne map is an equivalence in sSet™, so in sSet;rS if it lies
entirely over an object; details are left to the reader.

(3) i: K* — K for K a Kan complex: Because 0(K) —> K°P x K is a left fibration, 6(K) is
then again a Kan complex. It follows that & (i) is left marked anodyne.

(4) (A2)f Unz (A?)* — (A?)f: Obvious from the definitions.

It remains to show that for a trivial cofibration f : ;X — Y between fibrant objects, o (f) is again
a trivial cofibration. Since & (X) — 7z (Y) is a map of cocartesian fibrations over S and the marking

on 0 (—) contains these cocartesian edges, by Prp. 13.4 it suffices to show that for every object s € S,
0'(X)s — 0'(Y)s is an equivalence in sSet™. We have a commutative square

0'(X)y — O'(Y),

| |

where the vertical maps are left fibrations and the bottom map is an equivalence in sSet™. Therefore,
the map X* Xyt O'(Y)s — O'(Y), is an equivalence in sSet™. Applying Prp. 13.4 once more, we

reduce to showing that for every object z; € X, 0'(X )y, —> 5’(Y)f(m) is an equivalence in sSet™.
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Now employing the source maps, we have a commutative square

5/(X)w1 — 5/(}/)1”(11)

l !

X opt £ s yoph

where the vertical maps are left fibrations and the bottom horizontal map is a cartesian equivalence in
sSetj‘SuP. Therefore, the map X °? Xy o 0’ (Y); —> 0'(Y)s is a cartesian equivalence. By a third appli-

cation of Prp. 13.4, we reduce to showing that for every object ¢ € X, ﬁN’(X)(xo,xl) — 5’(Y)(f(x0),f(x1))
is an equivalence. But now both sides are endowed with the maximal marking and the map is equiv-

alent to Map y (xg, x1) ELN Mapy (f(xo), f(x1)), which is an equivalence by assumption.
The fact that this Quillen adjunction is an equivalence follows immediately from [3, 1.7]. O

5.16. Lemma. Let C' — S be a cocartesian fibration.
(1) Let f: 8" — S be a functor. Then we have an isomorphism f*(CV°P) = f*(C)v°P.
(2) Let g: S — T be a cartesian fibration and let C be a S-category. Then there is a T-functor
X : 9«(C)"°P — g.(C?°P) natural in C which is an equivalence.

Proof. (1) is obvious from the definitions. For (2), the map  is defined as follows: an n-simplex of
9+(C)?°P over o € T,, is given by the data of a commutative diagram

hé(A”) Xt St —— yC

! |

(A7 xp §) —L7 gt

and precomposition by the obvious map 5(A" X7 8) —> 5(A”) xS yields an n-simplex of g, (C"°P).
We now show that for all ¢ € T, x; is a categorical equivalence. Because x; is obtained by taking
levelwise O-simplices of the map of complete Segal spaces

Mapg(;6(A®) x Sf,,C) — Mapg(;0(A®) x 6(S,)¢,4C),

it suffices to show that for all n, hﬁ(A") x 0(9;)F — hﬁ(A”) x S is a cocartesian equivalence in

sSet+S. As a special case of Prp. 6.3, 0(S;)* — Sf is a cocartesian equivalence in SSetj'St, so the
claim follows. |

5.17. Lemma. The map ev? : (5’J(A")"p)h — (A™)E x ((A™)°P) is left marked anodyne.

Proof. For convenience, we will relabel 5(A")"P as the nerve of the poset I,, with objects ij, 0 < i <
j <nand maps ij — kl for i < k and j < [. Then an edge ij — kl is marked in I,, just in case j = [,
and the map ev®P becomes the projection p,, : I, — (A™)! x (A™)?, 5 + (4,7). Let f,, : (A™)" — I,,
be the map which sends i to 0i. Then p, o f,, : {0} x (A")* — (A™)# x (A™)" is left marked anodyne,
so by the right cancellativity of left marked anodyne maps it suffices to show that i, is left marked
anodyne. For this, we factor f, as the composition

(A" =1, 1 —Tho—> ... —> Ly =1,

where I, ;, C I,, is the subcategory on objects ij, ¢ = 0 or j < k (and inherits the marking from
I,,), and argue that each inclusion gi : I, C I g+1 is left marked anodyne. For this, note that gy
fits into a pushout square

{0} x (Akﬂ)bU{o}x(M)b(An_k_l)ti X (AR) —— (AnTh=l)E s (ARFLY

| |

9k
In,k In,kJrl

with the upper horizontal map marked left anodyne. O
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5.18. Construction. Suppose T an co-category, X, Z — T cocartesian fibrations, Y — T a cartesian
fibration, and a map p : 1 X X Yh y< of marked simplicial sets over 7. We define a map
pUP p XVP X yvorh 12 "°P by the following process:

Let J,, be the nerve of the poset with objects ij, 0 <7 <n, —n < j < n and —j < i and maps
ij = klif i <k, j <l. Mark edges ij — kl if j = 1. Let I,, C J,, be the subcategory on ij with j > 0
and I, C J, be the subcategory on ij with j < 0; also give I,,, I}, the induced markings. We have an
inclusion (A™)* — J,, given by i ~— i0 which restricts to inclusions (A")* — I,,, (A™)* — I/ and
induces a map vy, : I Uiany: I, C Jy.

Define auxiliary (unmarked) simplicial sets Z' — T by Hom (A", Z") = Hom /7 (J,,Z) and
Z" — T by Hom,p(A",Z2") = Hom (I, Uany: 1,,,4Z), where J, — A" via ij + i. We have
amap r : Z' —s Z" given by restriction along the ~,, which we claim is a trivial fibration. By a
standard reduction, for this it suffices to show that -, is left marked anodyne. Indeed, this follows
from Lm. 5.17 applied to I,, — (A™)* x A™ and the observation that the map A" x A" Uan I/, — J,,
is inner anodyne, whose proof we leave to the reader. N

Define also a map Z’ — Z"°P over T' by restriction along the map &' (A™) — J,, which sends ij
to jn if i = 0 and j(—i) otherwise. Finally, define a map X7 x7 Y"? — Z" over T as follows: a
map A" —s XVP xp YV is given by the data

(A" — X (G(Am)r) — v

L0

(An)n s T (An)ﬁ s T
We have isomorphisms hg(A”) >~ J/ and (5(A”)Op)h = [,, and obvious retractions I,, Uians

I' — I,,, I/, given by collapsing the complementary part onto A™. Using this, we may define

Iy Uianys I, — X xp Y? — 7
which is an n-simplex of Z”.

Choosing a section of 7, we may compose these maps to define p?°?, which is then easily checked
to also preserve the indicated markings. For example, ;1*°? on edges is given by

T11 w(z11,y11)
; |
Too — Zo1, w11, 11)
= M(x()(by()l) — M(CCOhyn) = l
Yo1r — Y11
) l l (200, Yoo) — a1p(oo0, Yoo)
Yoo M(xOanOO) — alu(ﬁoo,yoo)

where aip(zo0, yoo) is a choice of pushforward for the edge o in T that the diagrams are vertically
over.

5.19. Lemma. Let C' — T be a cartesian fibration and let D — T be a cocartesian fibration. There

ezists a T-equivalence 1 : Fun(C, T)"P —> ﬁl?lT(C””’p, Dver),

Proof. We have a map p : ﬁl;lT(C, D) xp C — D adjoint to the identity. Employing Cnstr. 5.18 on
w1 and then adjointing, we obtain our desired T-functor 1. A chase of the definitions then shows that
for all objects t € T, 1; is homotopic to the known equivalence Fun(C;, T) P ~ Fun(C/?, D;*). O

5.20. Lemma. Let K and L be S-categories. Then there exists a S-equivalence
Vi (K *g L)"P =5 LVP xg KV°P
over S x Al

Proof. Note that (S x Al)?P 22 §x (AY)°P. View (K g L)' as lying over S x Al via the isomorphism
(A)or =2 Al Since (K xg L)o?? = L"P and (K *g L)} = K", we have our S-functor ¢ as adjoint
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to the identity over S x JA!. Fiberwise, ¥, is homotopic to the known isomorphism (K, x L)°?
LSP % KJP, so 1 is an equivalence.

O R

5.21. Proposition. Suppose S-categories K and C'.
(1) The adjoint of the vertical opposite of the evaluation map induces a equivalence

MS (K, C)uop E’_> ms(Kvop7 Cvop).
(2) Suppose a S-functor p: K — C. We have equivalences
(C(%S)/)wp ~ (Cvop)/(p”°p75)’ (C/(p,S))wp ~ (Cvop)(p”"”,s)/.

Proof. (1): Recall from 6.3.1 the equivalence Fung(K,C) ~ m.7"{K,C}s. By Lm. 5.19 and Lm.
5.16(1), {K,C}¢" ~ {K"P ,C"P}g. By Lm. 5.16(1) and (2), m.a"*{K,C}{? ~ (m.n"*{K,C}g)"P.
Combining these equivalences supplies an equivalence Fung(K,C)"P ~ Fung(KvP,C"P). It is
straightforward but tedious to verify that the adjoint of the vertical opposite of the evaluation map
Fung (K, C)"? xg K — C"°P is homotopic to this equivalence.

(2): Combine (1), Lm. 5.20, Prp. 5.15 (which shows in particular that (—)“°? is right Quillen),
and the definition of the S-slice category. ]

5.22. Corollary. Let p: S xgs K — C be a S-functor. Then p is a S-limit diagram if and only if

PP KYP g § — CV? is a S-colimit diagram.

This allows us to deduce statements about S-limits from statements about S-colimits, and vice-
versa. For this reason, we will primarily concentrate our attention on proving statements concerning
S-colimits (and eventually, S-left Kan extensions), leaving the formulation of the dual results to the
reader.

6. ASSEMBLING S-SLICE CATEGORIES FROM ORDINARY SLICE CATEGORIES

Suppose a S-functor p : K — C. For every morphism «a : s — ¢ in S, we have a functor
Do+ Ks — Cy, and we may consider the collection of ‘absolute’ slice categories €}, , and examine the
functoriality that they satisfy. For this, we have the following basic observation: given a morphism
[t =t covariant functoriality of slice categories in the target yields a functor C,, , — C,, /s and
given a morphism g : s’ — s, contravariant functoriality in the source yields a functor C),_, — Cpog/-
Elaborating, we will show in this section that there exists a functor F : 5(5) —> Cat, out of the
twisted arrow category & (S) such that F(ca) ~ C,,_,, which encodes all of this functoriality. Moreover,
the right Kan extension of F' along the target functor 5(5’) — Sis C(p,5)/- We will end with some
applications of this result to the theory of cofinality and presentability.

We first record a cofinality result which implies that the values of a right Kan extension along

evy : 0(S) — S are computed as ends.

6.1. Lemma. The functor 0(S%/) — O(S) xg S* is initial.

Proof. Let (a:u —>t,8: s —> t) be an object of 5(5) x g 5% . We will prove that
C=0(8) (0(S) x5 5°) j(arp)

is weakly contractible. An object of C' is the data of an edge

XG(S)x 555/

f 5 g
8%
T ——y
in S/, which we will abbreviate as f - ¢, and an edge

h, g

5T ﬂ\¢

-
u -t t

in 0(S) xg S, which we will abbreviate as (h, g) %% (a, 3).
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Let Cy C C be the full subcategory on objects ¢ = ((f - g), (h,g) @) (a, B)) such that v is a
degenerate edge in S*/. We will first show that Cj is a reflective subcategory of C' by verifying the

first condition of 9, 5.2.7.8]. Given an object ¢ of C, define ¢ to be ((f 2 3), (’yh,ﬁ)(éﬂl)(a,ﬁ))
and let e : ¢ —> ¢’ be the edge given by

fg (hg) ), (vh, B)

idfT i’y ) \ / i
f lh> 3 (6,7)) (a, B) (6,idy))

We need to show that for all d = ((f’ &, B), (h’,ﬁ)(w)(a,ﬁ)) € Cp, Mapq (¢, d) < Mape(c,d) is
a homotopy equivalence. The space Mapg(c, d) lies in a commutative diagram

Map (e, d) ————————— Map g, (f 2> g.f' 2 8)

| |

Map(ﬁ(S)XSSS/)/(ayB) ((h, 9)7 (h/v 5)) — Mapﬁ(s)xsss/ ((h7 9)7 (hl7 ﬁ))

l J((Slﬂ'd)*
0 (677)
A Mapﬁ(s)xsss/((hag)a(0‘75))
where the two squares are homotopy pullback squares. We also have the analogous diagram for

Map(c/,d), and the map e* is induced by a natural transformation of these diagrams. The assertion
then reduces to checking that the upper square in the diagram

/ (’id N * ’
Map g, (f 2o B, f 25 5) ™ Map s 5., (f 2> g, f 25 )

| !

Mapg(s)xsss/ ((/Yhﬂ 6)7 (CY, B))(ldT,’Y) Mapﬁ( )XSSS/ ((h7 9)7 (Oé, 5))

! !

Mapg., (3, 3) - Mapg./ (g, 3)

is a homotopy pullback square. Since (idy,7) and (idy,7) are evi-cocartesian edges in 5(5) and
% (S s/ ) respectively, the lower and outer squares are homotopy pullback squares (where we implicitly
use that the map (&', id) covers the identity in S/ to identify the long vertical maps with those induced
by evy), and the claim is proven.

To complete the proof, we will show that ¢ = (8 = 3, (id,, B)(Oﬂ)(a, B)) is an initial object in Cp.
Let d € C be as above. In the diagram

0 (h ldg)

A Mapﬁ(ss/)(ﬂ 67f/4’6)

(ovidy) .
AV % e Map(j(s)x Ss/ ((Zdtvﬁ) ( )) — Map(}(s)(ldtva)

| |

A® % Mapg. (8, ) ————— Maps(t,1)
we need to show that the upper square is a homotopy pullback square in order to prove that
Mape(c,d) ~ *. The fiber of &(S) over t € S is equivalent to (S,;)°?; in particular, id; is an
initial object in the fiber over ¢. Therefore, the two outer squares are both homotopy pullbacks. Since
the lower right square is a homotopy pullback, this shows that all squares in the diagram are homotopy
pullbacks, as desired. O
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Suppose K a S-category. Let J, be the poset with objects ij for 0 < i < j < 2n + 1 which has
a unique morphism 3j — kl if and only if £ < i < j <. Let I, C J, be the full subcategory on
objects ij such that i < n. In view of the isomorphisms J, = @(A21) = G((A™)°P « A™), the I,
and J,, extend to functors Is C J, = 5((A')"p *A®) : A — sSet. Viewing I,, and J,, as marked
simplicial sets where ij —> kil is marked just in case k = i, we moreover have functors to sSet™.
Define the simplicial set X : A°? — Set to be Homgget+ (Lo, 1K) X Hom(1,,s) Hom((A®)? « A®,S)
where Iy C Jo, — (A®)°? x A® is given by the target map. An n-simplex of X is thus the data of a
diagram

knn — kn(n+1) — . T kn(2n+1)

! 1 1

kll kln kl(n+1) e k1(2n+1)
1 1 1 1
koo ko1 kon kotny1) — - — ko@n+1)

where the horizontal edges are cocartesian in K and the vertical edges lie over degeneracies in S.
Declare an edge e in X to be marked if the corresponding map I; — 1K sends all edges to marked
edges. We have a commutative square of marked simplicial sets

X —— (KV)*

L

0(9) — (5°p)t

where the map X —> K is defined by restricting I,, — K to I/, — K where I, is the full subcategory
of I, on ij with 7 < n. Let 1 denote the resulting map from X to the pullback.

6.2. Lemma. ¢ : X — ﬁN(S)‘i X (gor)s (KV)tl is a trivial fibration of marked simplicial sets.

Proof. Since any lift of a marked edge in 5(5)ﬁ X (gor)t (KV)h to an edge in X is marked, it suffices to
prove that the underlying map of simplicial sets is a trivial fibration.

We first show that I}, C I,, is left marked anodyne. Let I, ,, C I, be the full subcategory on objects
ij with ¢ < k and similarly for Iq’% i~ For 0 <k < n we have a pushout decomposition

((AnE)or)> x (AR U ((An=Fm oy s (A — T U Tk
((An=k=1)om)? x (AR)# g

n,n—k—1

| |

((Anfk)op)b X (AnJrkJrl)ﬁ In,nfka

and the lefthand map is left marked anodyne by [9, 3.1.2.3]. It thus suffices to show that I}, , =
(A™M)? — I, o = (AZ"+1)F is left marked anodyne, and this is clear.
We now explain how to solve the lifting problem

OA™ — X
A" O(S) x g KV.
To supply the dotted arrow we must provide a lift in the commutative square

al, Uar, I;L — K
.t

[

I, —— S%.
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where 01,, = [ L]J [ }In,l as a simplicial subset of I, and likewise for OI/. Then since I/ — 91, Usr/

n—1]C[n "
I, and I], — I, are left marked anodyne, f is a cocartesian equivalence in sSet;rS, and the lift
exists. 0

For all s € S, we have trivial cofibrations i, : Ky —=> (K"),, and thus commutative squares

K, —— KV

o

0(S) — SoP.

From this we obtain a cofibration ¢ : | ] ,.¢ Ks —> 0(S) xgo0 KV. We have an explicit lift +/ of ¢ to
X, where Ky — X is given by precomposition by I,, — A™ ij — n —i.
By Lm. 6.2, there exists a lift o in the commutative square

Uses Ks ————= X

L . U - Lﬁ

5(5) X Gop KY — 5(5) X Gop KV,

Let x : X — K be the functor induced by A" — I, i — (n —i)(n + 4). Define the twisted
pushforward P : 5(5) x g KV —> K to be the map over S given by the composite x o o. Then for
every object a: s —> t in 5(5), P,oi,: K, — K, is a choice of pushforward functor over «, which
is chosen to be the identity if a = id;.

6.3. Proposition. For all A € sSet g,
ida x5 P A x5 (G(S)F X (gomys (KV)") — AF x5 4K
is a cocartesian equivalence in sSet}"A,

Proof. Let (Z, E) denote the marked simplicial set &/(S)* X (gor)t (KY)%. Viewing Z as 0(S) X gorxs
(KV x 8), we see that Z — S is a cocartesian fibration with the cocartesian edges a subset of F.
Moreover, every edge in E factors as a cocartesian edge followed by an edge in F in the fiber over S.
By Prp. 13.4, it suffices to verify that for all s € S, ]35 is a cocartesian equivalence in sSet™. Since
id, is an initial object in &(S) x g {s}, the inclusion of the fiber (KV)Y C (Zs, E,) is a cocartesian
equivalence in sSet™ by [9, 3.3.4.1]. We chose P so as to split the inclusion of K in Z, so this
completes the proof. O

Consider the commutative diagram

ﬁ(S)ﬁ Xs hK

idﬂzmﬂ\

O(S)! x5 O(8)F xgon (KV) — O(9) x g (KV)? — (KV)* x §*

i | e

O(S) x5 O(8)t ud O(S)F — 5 (SoP) x S

Since KV —> S is a cartesian fibration, by Thm. 2.23 (¢V X id). is right Quillen, and we saw in
Exm. 2.25 that 7, is right Quillen. Therefore, given a S-category C, we obtain a &'(S)-category

{K,C}s = (ev*o(q” x id)s o prg) (;C),
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and the map idg(s) X s P induces a S-functor
(6.3.1) 0 : Fung(K,C) — ma"{K,C}g,
natural in K and C. By Prp. 6.3 applied to A = S*/ for all s € S, 6 is an equivalence.

6.4. Remark. As a corollary, the global sections of {K,C}g are equivalent to Fung(K,C). If we
knew that under the straightening functor St, {K,C}s was equivalent to the composite

5(5) 5o x g ST (9), Cat2? x Cato, Fun, Cat.,,

then this would yield another proof of the end formula for the co-category of natural transformations,
as proven in [6, §6]. As we manage to always stay within the environment of cocartesian fibrations,
this identification is not necessary for our purposes.

6.5. Definition. Given a S-functor p: K — (' and a choice of twisted pushforward Pfor K , define
the cocartesian section wy, : 0(S) — {K,C}g to be the adjoint to

poﬁ : ﬁN(S)ii X gop KVh —> hK —> hC‘
For objects o : s — t in O(S), wp(ar) € Fun((KY)s, Ct) is the functor
ptoﬁa . (Kv)s —>Kt‘> Ct~

Define the twisted slice category CP/5 to be o(S) X{k,cys 1K xs S,C}s (we omit the dependence
on P from the notation). The fiber of &(S) X (k,cys 1l x5S, C}s over an object a : s —> t is crioba/,

We now connect the constructions C?/° and C?/S. A check of the definitions reveals that 6 o op =
7.7"*(w,p) for the canonical cocartesian section o, : S — Fung (K, C'). We thus have a morphism of
spans

S T) MS(K, C) — MS(K*S S, C)

e X

S 4) Ty TC '* {K C}S  TT /*{K*SS O}S

e (wp)
with all objects fibrant and the right horizontal maps fibrations by a standard argument. Taking
pullbacks, we deduce:

6.6. Theorem. We have an equivalence
W*W/*(CI’A/E) =, ov/S,

In other words, the right Kan extension of C’pﬂ/is along the target functor evy : 5(5) — S is equivalent
to CP/S,

Proof. Our interpretation of this equivalence is by Exm. 2.25. |

Relative cofinality. Let us now apply Thm. 6.6. We have the S-analogue of the basic cofinality
result [9, 4.1.1.8].

6.7. Theorem. Let f: K — L be a S-functor. The following conditions are equivalent:
(1) For every object s € S, fs: Ky —> Ly is final.
(2) For every S-functor p: L — C, the functor f* : CP/S — CPI/S is an equivalence.
(8) For every S-colimit diagram p: LxsS — C, po f® : K xg S — C is a S-colimit diagram.

Proof. (1) = (2): Factoring f as the composition of a cofibration and a trivial fibration, we may
suppose that f is a cofibration, in which case we may choose compatible twisted pushforward functors
Py and Pp. Let p : L —> C be a S-functor. Precomposition by f yields a ﬁ(S) functor f* :
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Cm — CPI/E Passing to the fiber over an object o : s —> t, the compatibility of Py and Py,
implies that the diagram

(KY), (PK)a K,

(fv)SJ/ f’fl w)f
(ﬁL)a Lt

(LY), N

commutes and that B N
(F)a = (f\/): . opeo(PL)e/ __, 0Pfeo(Pr)al/

By [9][4.1.1.10], (fV)s is final, so by [9][4.1.1.8], (fV)% is an equivalence. Consequently, f* is an
equivalence. Now by Thm. 6.6, f* is an equivalence.

(2) = (3): Immediate from the definition.

(3) = (1): Let s € S be any object and p; : LY —> Top a colimit diagram. Let p : (L*gS)s, — Top
be a left Kan extension of Py along the full and faithful inclusion LY C (LxgS);. By transitivity of left
Kan extensions, p is a left Kan extension of its restriction to Ls. By Prp. 5.4, under the equivalence
Fun(L, Top) ~ Fung(L, Tops), p is a S%/-colimit diagram. By assumption, Ho (%), is a S*/-colimit
diagram. By Prp. 5.4 again, p; o fs is a colimit diagram, as desired. O

6.8. Definition. Let f: K — L be a S-functor. We say that f is S-final if it satisfies the equivalent
conditions of Thm. 6.7. We say that f is S-initial if fV°P is S-final.

6.9. Example. Let F': C ——= D :G be a S-adjunction. Then F is S-initial and G is S-final.

6.10. Remark. Any S-functor which is fiberwise a weak homotopy equivalence is a weak homotopy
equivalence, by [9, 4.1.2.15], [9, 4.1.2.18], and [9, 3.1.5.7]. In particular, any S-final or S-initial
S-functor is a weak homotopy equivalence. However, in general a S-final S-functor is not final.

A remark on presentability. Suppose the functor S — Cat, classifying the cocartesian fibration
C — S factors through Prf ie. C — Sisa right presentable fibration. For any X a presentable
oo-category and diagram f : A — X, X// is again presentable and the forgetful functor X// — X

creates limits and filtered colimits. Therefore, the twisted slice category C'®5)/ is a right presentable
fibration. Since the forgetful functor Cat,, — Pr® creates limits, by Thm. 6.6 we deduce that
C®5)/ is a right presentable fibration. In particular, in every fiber there exists an initial object.
However, these initial objects may fail to be preserved by the pushforward functors. In fact, even if
we assume that C' — S is both left and right presentable, C' may fail to be S-cocomplete.

Another cocartesian fibration over ¢ (S). The construction of the slice category C"%)/ is in some
respects unsatisfactory, because it relies upon an inexplicit choice of twisted pushforward functor. In
this subsection, we provide a more explicit construction of an equivalent cocartesian fibration over

o(9).

6.11. Definition. Let K and C be S-categories and let p : K — C be a S-functor. Define the
simplicial set Cpf/vs over 0(S) by declaring, for a map A™ — &'(S) and corresponding map (o,7) :
A" % A" — S,

Hom/é(s)(A", C;:]TS‘) = HOHlK|0//S(K|U * An, C)

where the set on the right hand side equals the set of dotted arrows making the diagram
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commute. Endow Cﬁg with a marking by declaring an edge to be marked just in case the corre-

sponding map K|a:1 * Al — C sends A to a cocartesian edge in C.

Observe that we have a forgetful functor C,T/f; — C covering the target functor 7 (S) — S, given
by restricting maps K|a» * A™ — C to the copy of A™.

6.12. Proposition. 7 : Cm — 0(S) is fibrant in sSetjﬁ(S).

Proof. We first prove that 7 is a cocartesian fibration. Let 0 < k < n. We have to solve the lifting
problem

Ay — Corg

A" — G(S).

with the proviso that if & = 0, the edge A%} is sent to a marked edge in C,,/Ns' Let A C A" x A"
be the simplicial subset spanned by the faces og x o1 : A™ x A™ —s A™ x A™ such that there exists
l#k, 0<I<nwithn—1¢o0and ! ¢ oy. Then maps A} — 5(5) are specified by maps A — S.
Moreover, we have a factorization of the inclusion as a composite of inclusions

AL AT L« AT By An Uan_ Ap_p * A Uppe A 2 A" % A
We may thus reformulate our lifting problem as supplying a dotted arrow so as to make the diagram

K

Klan_,

n
An—k

AXAn*An (K|An*An)4’KAzik*A24’K‘An U KA7L7k*AZHAn*>K|A"*An
k

T P

A A"+ AT A" U AR x A U A
k

n—k

commute. To proceed, we make the following observations about the maps «, 3, and ~.

» « is inner anodyne: We can slightly modify the proof of [11, 5.2.1.3] to show this. Observe
that a face 0 = ogx 01 : A" x A™ C A?_, * A} does not belong to A just in case the
set of vertices {i : n —i € g ori € o1} contains {0,...,k,...,n}. Partition the collection
I of faces in Al'_, x A} not in A into primary and secondary faces, where ¢ is primary if
{0,...,n—k — 1} ¢ 0o and secondary otherwise. If o is primary and k ¢ o1, let o’ be the face
obtained from ¢ by adding k to o1, and if o is secondary and n — k ¢ og, let ¢’ be the face
obtained from o by adding n — k to 0g. Note that o’ is then still in I, and moreover that
o +— o' pairs faces in I uniquely. The rest of the proof is now as in [11, 5.2.1.3].

» If 0 < k < n, then § is visibly inner anodyne. Otherwise, viewing the edge A{%!} in the
second copy of A™ as marked, [ is the composite of a right anodyne map and a left marked
anodyne map.

» 7 is inner anodyne: By [9, 2.1.2.3] applied to the right anodyne map A?_, — A" and
() — A}, the map

Al _Lx A — AT x A}
is inner anodyne, hence so is the pushout
A" Upr  Ap_p % AR Upp A" — A" % AR Upp A™.
Now by [9, 2.1.2.3] applied to ) — A™ and the left anodyne map A} — A", the map
ATL * AZ UA" ATL —> An * ATL
k

A" UA27

k

is inner anodyne. Composing these two maps gives the map in question, so we conclude.
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To apply these results to our situation in which K — S and K|a»*A™ — A" xA"™ are cocartesian
fibrations (the latter by Prp. 4.7), recall that inner anodyne maps pull back along cocartesian fibrations
to trivial cofibrations in sSetjoya1. Thus if 0 < k& < n, we see that

iSK|An UK‘AZ,;C (A X Anx AT (K|An*An>) — K|An * A"

is a trivial cofibration in sSetjqya1, so the dotted map exists in that case. Now suppose k£ = 0 and
consider i as a map of marked simplicial sets with A%} in the second copy of A" marked and the
cocartesian edges in K marked. We want to show that ¢ is a trivial cofibration in sSet;rS. Recall that

if A— B over S is a trivial cofibration in sSetjoyal, then A’ — B’ is a trivial cofibration in sSeth
([9, 3.1.5.3]), hence A — B with any common marking is also a trivial cofibration in sSet/+S. Thus,
since v and +y are inner anodyne, we are reduced to showing that

Kl|an Uk | Klag *:A5 — Klan Uk Klag x5Ag Uap ;A"

is left marked anodyne, which it is, being obtained by pushout from yA§ — A™.
We have shown not only that 7 is a cocartesian fibration, but also that every marked edge in Cz%

is m-cocartesian and that we may choose our m-cocartesian lifts to be marked edges. To complete the
proof, we must verify that every m-cocartesian edge is marked, for which it suffices to show that every
equivalence in C’m is marked. But this is true by definition, since the forgetful functor Cﬁé — C
preserves equivalences. (Il

We now identify the fibers of C;T/f@ as ordinary slice co-categories. Let a: s —> ¢ be an edge in S.
Choose a lift h in

K, x {0} 25 11

K, x (A1) — (Al
and let ¢ = h|g x(1} : Ks — Ch.
6.13. Lemma. There is a categorical equivalence (Cp/NS)a ~ (Ct)g,-
Proof. If K, = () then both co-categories are isomorphic to C; and the claim is proved, so suppose
not. Consider K as a marked simplicial set with the equivalences marked. Define a functor
Fl: A — sSet}*}s//A1

by
F{(n) = (K¢ — K Ug,x(any (Ko x (A")F) % (A") — A"
and let Fy be the unique colimit-preserving extension of F] to sSet Joyal- Define a second colimit-
preserving functor
Fy : sSetjoyal — sSet};S//Al
by
Fy(A) = (K, — Ko« A" — AY).

Let G and G2 be their right adjoints. Then by definition G (K & iCla — Al) = (ngyg)a; define

(Cla)ly., = Ga(Ky 255 1Clo — A1),

Observe that Fy is left Quillen and that Fj preserves cofibrations. Using the commutativity of the
square

Ky x (AM) — (K, x (A™)F) x (A™)?

K,

KS*(A”)",
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define a natural transformation 6 : Fy — F3, and let ¢ : (Cla)y, , — (CZ,A/fg)a be the adjoint map.
We first prove that 6 4 is a cocartesian equivalence for all A, which will imply that F7 is left Quillen and
1 is a categorical equivalence by [7, 1.4.4(b)]. In view of left properness and the stability of cocartesian
equivalences under filtered colimits, it suffices to show that Oa» is a cocartesian equivalence for all
n > —1. If n = —1, the result is obvious, so suppose n > 0. Then, since A1} © (A™) is left
marked anodyne, (A")¥ — A is a cocartesian equivalence in sSetj‘T for all oco-categories T and
maps A — T, so by left properness, [9, 3.1.4.2], and Lm. 4.10, s~ is a cocartesian equivalence.
Next, we examine the restriction functor

p: (C|a)h/ - (C|a);\s/

induced by the inclusion i : K¢ x {0} — K, x (A!)f. We claim that p is a trivial fibration. To show
this, for every cofibration Ag — A we must solve the lifting problem

(Ko x A§)* A" U (K x (ADf) A — 4Cla
(KsxAL)*A? et

(K, % (A1) x 42 (aly,
where the bottom map is defined by
(Ko x A% A —> Al x AD 2 A2 55 AL
The left vertical map is left marked anodyne by Lm. 4.10, so the dotted arrow exists. Finally, since
the inclusion j : K, x {1} — K, x Al is right anodyne, by [9, 2.1.2.5] the restriction functor
(Cla)ny — (Ci)gy

is a trivial fibration. Chaining together these equivalences completes the proof. ([l

We defer the full comparison between Cz% and Cpr/vs to a future work.

7. TYPES OF S-FIBRATIONS

In this section we introduce some additional classes of fibrations which are all defined relative to

S.

7.1. Definition. A S-functor ¢ : C — D is a S-fibration if it is a categorical fibration. A S-fibration
¢ is an S-cocartesian resp. S-cartesian fibration if for every object s € S, ¢5s : Cs — Dy is a
cocartesian resp. cartesian fibration, and for every A! x Al — C

h
Ts > Tt

l ! l g
k
Ys > Yt
with h and k ¢-cocartesian edges over ¢(h) = ¢(k), if f is a ¢s-cocartesian resp. ¢4-cartesian edge
then g is a ¢¢-cocartesian resp. ¢;-cartesian edge.

Equivalently, ¢ : C — D is D-(co)cartesian if it is a categorical fibration, fiberwise (co)cartesian,
and for every edge in S, the cocartesian pushforward along that edge preserves (co)cartesian edges in
the fibers. (We formulate our definition as above so as to avoid having to make any ‘straightening’
constructions such as choosing pushforward functors.)

7.2. Remark. ¢ : C — D is a S-fibration if and only if ¢ : \C — D is a marked fibration.

7.3. Remark. In view of [9, 2.4.2.11}, [9, 2.4.2.7], and [9, 2.4.2.8], ¢ : C' —> D is an S-cocartesian
fibration if and only if ¢ is a cocartesian fibration. However, there is no corresponding simplification
of the definition of an S-cartesian fibration.

7.4. Lemma. Let ¢ : C — D be a S-cartesian fibration and let f : x —> y be a ¢4-cartesian edge in
Cs. Then f is a ¢-cartesian edge.
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Proof. The property of being ¢-cartesian may be checked after base-change to the 2-simplices of D.
Consequently, we may suppose that S = A! and s = {1}. We have to verify that for every object
w € C we have a homotopy pullback square

fa
Mapq(w, x) ——— Mapg(w, y)

J» Js
A(f)
MapD(d)wv (,Z5£L’) - MapD((j)wv d)y)

If w € Cy, for any choice of cocartesian edge w —> w’ over 0 — 1, the square is equivalent to

fs
Mapg, (w', ) ——— Mapg, (w',y)
6. | o-
NN ,
Mapp, (¢pw', ) —> Mapp, (¢w’, dy).

Hence we may suppose that w € C1, in which case the square is a homotopy pullback square since
f is a ¢1-cartesian edge. O

Recall (Ntn. 4.29) the fiberwise arrow S-category €g(D). Fix ¢ : C — D a S-functor.
7.5. Definition. The free S-cocartesian and free S-cartesian fibrations on ¢ are the S-functors
Freoe"(¢) = evi opry : € xp Os(D) — D,
Fr"(¢) = evgopr, : Os(D) xp C — D

7.6. Proposition. Fr*“*(¢) is a S-cocartesian fibration. Dually, Fr**"(¢) is a S-cartesian fibration.

Proof. We prove the second assertion, the proof of the first being similar but easier. First note
that Os(D) xp C is a subcategory of 0(D) xp C stable under equivalences. Therefore, since evy :
O(D) xp C —> D is a cartesian fibration, Fr®™*(¢) is a categorical fibration. Moreover, for every
object s € S, Frc””“t(gﬁ)S : 0(Ds) xp, Cs is the free cartesian fibration on ¢, : Cs — Dg. It remains
to show that for every square

(a— ¢z,z) —— (b— ¢y, )

lf lg

(@ — ¢/, 2') = (¥ = oy, )

in Os(D) xp C with the horizontal edges cocartesian over S and the left vertical edge Fr®(¢),-
cartesian, the right vertical edge is Fr°*(¢);-cartesian. This amounts to verifying that y — ¢/ is an
equivalence in C;. The above square yields a square

r—y

lfk lg

m/ y/

in C with  — 2’ an equivalence and the horizontal edges cocartesian over S, from which the claim
follows. 0

Define S-functors 1y : C —> C xp Os(D) and 1 : C —> Og(D) x p C via the commutative square

C — 0s(D)

-, I

C——D

where the upper horizontal map is the composite C — 0s(C) — Og(D).
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7.7. Proposition. (g is left S-adjoint to pro. Dually, vy is right S-adjoint to pre.

Proof. We prove the first assertion, the proof of the second being similar. To prove that we have a
relative S-adjunction ¢y 1 pro, we must prove that for each s € S we have an adjunction (¢9)s 4 (pre)s-
So suppose that S = A% Since pr oty = id, it suffices by [9, 5.2.2.8] to check that the identity is a
unit transformation: that is, for every z € C and (y, ¢y — a) € C xp O(D),

pre : Mapey , o(py (2, idgs ), (y, dy — a)) — Mape(z,y)

is an equivalence. Under the fiber product decomposition

MaprDﬁ(D)((‘xa id(baf)v (yv ¢y — a)) A MapC(Iv y) XMapD(¢w,¢y) Mapﬁ(D)((Zd¢l)7 (QSZ/ — b))
the map pry is projection onto the first factor. The adjunction t: D < (D) :ev, obtained by
exponentiating the adjunction ig: {0} == A! :p implies that
Map s (p)((ides), (dy — b)) — Mapp(d, dy)
is an equivalence, so the claim follows. O

We conclude this section with an observation about the interaction between S-joins and S-cocartesian
fibrations which will be used in the sequel.

7.8. Lemma. Let C, C’, and D be S-categories and let ¢, ¢ : C,C" — D be S-functors. If ¢ and ¢’
are S-(co)cartesian, then ¢ x ¢’ : C *p C' —> D is S-(co)cartesian.

Proof. This is an easy corollary of Prp. 4.7. |
7.9. Definition. We say that a S-functor F': C — D xg E is a S-bifibration if for all objects s € S,

Fy is a bifibration. Observe it is then automatic that prp F' is S-cartesian and prg F': C — E is
S-cocartesian.

7.10. Example. The S-functor
Fung(K x5 L,C) — Fung(K,C) xg Fung(L,C)

is a S-bifibration by Lm. 4.8. In particular, for a S-functor p : K —> C, the S-functors C»5)/ — C
and C/(P5) — C are S-cocartesian resp. S-cartesian.

8. RELATIVE ADJUNCTIONS
In [11, 7.3.2], Lurie introduces the notion of a relative adjunction.

8.1. Definition. Let C' and D be S-categories. We call a relative adjunction F': C == D :G (with
respect to S) a S-adjunction if F and G are S-functors.

We prove some basic results about S-adjunctions in this section. Let us first reformulate the
definition of a relative adjunction in terms of a correspondence. Let F': C' — D be a S-functor. By
the relative nerve construction, F' defines a cocartesian fibration M —> A! by prescribing, for every
A" 22 A™ x A™1 5 Al the set Homa1 (A", M) to be the collection of commutative squares

AN — C

Ll

A" — D

for ny; > 0, and setting Homa1 (A™, M) = Hom(A"™, C) for n; = —1. Moreover, the structure maps
for C and D to S define a functor M — S by sending A™ — M to A" — D — Sif n; > 0, and
A" — C — S if ny < 0. Then M is a S-category, M —> S x Al is a S-cocartesian fibration, and
F admits a right S-adjoint if and only if M — S x A! is a S-cartesian fibration.

8.2. Proposition. Let F: C ——= D :G be a S-adjunction and let I be a S-category. Then we have
adjunctions

F,:Fung(I,C) <= Fung(I, D) : G,

G*: Fung(C,I) <= Fung(D,I) : F*
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Proof. Let M —> S x A be the S-functor obtained from F. We first produce the adjunction F, - G..
Invoking Thm. 2.23 on the span

(A1) & T x (A1)E 75§ x (Al
we deduce that m,n’* : Ssetj(sﬁx(Al)ﬁ) — sSetj(Al)ﬁ is right Quillen. Let N = w,n"*(M). Then
N — Al is a cocartesian fibration classified by the functor
F, : Fung(I,C) — Fung(l, D).

Now invoking Thm. 2.23 on the span

(ANF)P & (I x (A1) £ (8™ x (A1)F)7P
we deduce that with respect to the cartesian model structures p,p™ : sSetf(SN KAl sSetj(Al)u
is right Quillen. Let N’ = p,p"* M. Since G is right S-adjoint to F, N’ — Al is a cartesian fibration
classified by the functor

G, :Fun/g(I,D) — Fun,4(I,C)
where we view I, C, D as categorical fibrations over S. N is a subcategory of N’, and the cartesian

edges e in N’ with dy(e) € N are in N. Hence N — A! is also a cartesian fibration classified by the
functor

G, : Fung(I, D) — Fung(l,C).

We now produce the adjunction G* - F* by similar methods. Let &y be the collection of edges
e : x — y in M such that e admits a factorization as a cocartesian edge over S followed by a
cartesian edge in the fiber. Note that since M — S x Al is a S-cartesian fibration, &) is closed under
composition of edges. Invoking Thm. 2.23 on the span

(AN)F 4= (M, &) = 8% x (A
we deduce that prp™ : sSetj'(SuX(Al)ﬁ) — sSetj'(Al)n is right Quillen. Let P = p.pu/* (1 x (A1)#).
Then P —> A' is a cocartesian fibration classified by the functor

G* : Fung(C,I) — Fung(D,I).
Let & be the collection of edges e : ©+ —> y in M such that e is a cocartesian edge over an
equivalence in S. Now invoking Thm. 2.23 on the span
(A1) & (M) £ (5™ x (A1)

*

we deduce that with respect to the cartesian model structures v, : sSetj'(SN x(AL)H) — sSet}"(Al)n

is right Quillen. Let P’ = v,/"* (I~ x (A')#). P’ — Al is a cartesian fibration with P as a subcategory.
One may check that P —> A inherits the property of being a cartesian fibration, which is classified
by the functor F* : Fung(D, I) — Fung(C,I). O

8.3. Corollary. Let F: C ——= D :G be a S-adjunction and let I be a S-category. Then we have
S-adjunctions

F,: Fung(I,C) <= Fung(I, D) :G,
G*: Fung(C,I) —= Fung(D,I) : F*
Proof. By Prp. 8.2, for every s € S
F.: Fung., (I xg 8% ,C x5 8%) == Fung., (I x5 S*,D x5 S*) :G.,
is an adjunction, and similarly for the contravariant case. O

To state the next corollary, it is convenient to introduce a definition.
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8.4. Definition. Suppose m: C — D a S-fibration. Define the co-category Sectp/s(m) of S-sections
of m to be the pullback

Sectp,s(m) —— Fung(D, C)

!

A? — P Fung(D, D).

Define the S-category Sectp,,5(C) to be the pullback

Sectpp/g(m) — Fung(D, C)

| I

s — 2 Fung(D, D).
We will often denote Sectp/s(m) by Sectp,s(C), the S-functor 7 being left implicit.
Note that for any object s € S, the fiber Sect,,4(C)s is isomorphic to Sectp, /(7).

8.5. Corollary. Letp : C — E and q : D — FE be S-fibrations. Let F: C —= D :G be an
adjunction relative to E where F' and G are S-functors. Then for any S-category I,
F,:Fung(I,C) <= Fung(I, D) :G.

is an adjunction relative to Fung(I, E). In particular, taking I = E and the fiber over the identity,
we deduce that

F,: Sectp s(p) <= Sectg/s(q) : G«
is an adjunction, and also that

F.: Sectp,s(p) == Sectp,s(q) :G«
is a S-adjunction.

Proof. The proof of Prp. 8.2 shows that the unit for the adjunction F, 4 G, is sent by p, to a natural
transformation through equivalences. (Il

8.6. Lemma. Let F': C ——= D :G be a S-adjunction. For every S-functor p: K — D, we have a
homotopy pullback square in sSet;“S

c/(Gp.S) __y p/®:S)

(e} D
J/GVO ievo

c—Lr +p

where the upper horizontal map is defined to be the composite C/(Gp.S) By /(FGp,s) <21, () D/®:5)
Dually, for every S-functor p: K — D, we have a homotopy pullback square in SSet/S

DEp.S)/ .y oS/

D (e}
J{ev 1 J{ev 1

D—% .

where the upper horizontal map is defined to be the composite DFP: N/ G, o(GFps)) M2, o(p,S)/

Proof. We prove the first assertion; the second then follows by taking vertical opposites. We first
explain how to define the map ¢(p);. Choose a counit transformation € : D x A' — D for F
G such that 7p o € is the identity natural transformation from 7p to itself. Then € o (p x id) is
adjoint to a S-functor €(p) : S x A! — Fung(K, D) with €(p)o = orgp and €(p)o = 0,. Because
Fung(Sxs K, D) — DxgFung(K, D) is an S-bifibration, from e(p) we obtain a pushforward S-functor
e(p) : D/FGP.S) _, D/:%) compatible with the source maps to D.
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We need to check that for every object s € S, passage to the fiber over s yields a homotopy
pullback square of co-categories. Because (D/®S)), = (DL®*#)  we may replace S by S*/ and
thereby suppose that s is an initial object in S.

Let r : {s} xS — S be a left Kan extension of the identity S — S. By the formula for a left
Kan extension, r(s) is an initial object in S, which without loss of generality we may suppose to be s.
Using ro (idx7) as the structure map for {s}* K over S, define ¢’ : {s}x ;K —> {s} *s K as adjoint
to the identity over S x OA'. It is easy to show that ¢’ is a trivial cofibration in sSet}"S. Moreover,
since the inclusion {s} — S% is a trivial cofibration, {s} xg ;K —> S* x5 ;K is a trivial cofibration
in sSeth by Thm. 4.16. Let ¢ be the composition of these two maps. Then because Fung(—, —) is
a right Quillen bifunctor, ¢* : Fung(S* xg 1K, ;D) — Fung({s} x,K, ;D) is a trivial Kan fibration.

We further claim that the inclusion j : Fung({s} x 1K, ;D) — D, xp Fun({s} * K, D) Xpun(x,D)
Fung (K, ;D) is an equivalence. Indeed, we have the pullback square

Fung({s} * 4/, ;D) — Dy xp Fun({s} * K, D) Xpun(k,p) Funs(,/, ;D)

! |

ro(idxm
A G, (s} xs Pun({s} * K, S) X pun(rc.5) {7k }

and the term in the lower right is contractible since it is equivalent to the full subcategory Fun’({s} %
K, S) C Fun({s} x K, S) of functors which are left Kan extensions of 7.
Now taking the pullback of the composition j o ¢* over {p}, we obtain an equivalence

(D/(P»S))S — D, xp D/P.
Similarly, we have an equivalence
(C/EPY ., Oy xe CCP,
Since F' 4 G is in particular an adjunction, by [9, 5.2.5.5] C/S? — C xp D/? is an equivalence.
Taking the fiber over s, we deduce the claim. O
8.7. Corollary. Let F': C —= D :G be a S-adjunction. Then F preserves S-colimits and G preserves
S-limits.

Proof. Letp: K*xgS — C be a S-colimit diagram. To show that Fp is a S-colimit diagram, it suffices
to prove that the restriction map DUFP:5)/ — DFP.S)/ ig an equivalence. We have the commutative
square

DRSS 0®5/ x D

| |

DEPS)/ s ¢WS)/ x D

(here we suppress some details about the naturality of e(—);). The righthand vertical map is an
equivalence by assumption, and the horizontal maps are equivalences by Lm. 8.6. Thus the lefthand
vertical map is an equivalence. (|

9. PARAMETRIZED COLIMITS

In this section, we first introduce a parametrized generalization of Lurie’s pairing construction [9,
3.2.2.13]. We then employ it to study D-parametrized S-(co)limits. This material recovers and extends
[9, §4.2.2] (in view of Lm. 4.5). It is a precursor to our study of Kan extensions.

An S-pairing construction.

9.1. Construction. Let p: C — S, ¢ : D — S be S-categories and let ¢ : C' — D be a S-functor.
Let m, 7" : 0¢““"Y(D)x p C —> D be given by m = evgopry, 7’ = evy opr;. Let & denote the collection
of edges e in 0*(D) X ey, p.¢ C such that 7(e) is g-cocartesian and pr,(e) is p-cocartesian (so 7/(e)
is g-cocartesian). Then the span

D & (6™ (D) xpp C, &) =5 ,D
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defines a functor
e ¥ sSet}:D — sSetj‘hD.
For a S-category F and a S-functor v : E — D, define
(FUHD/S(O, E) —> hD) = 7T*7T,*(hE — hD)

9.2. Lemma. Let q: D — S be a S-category.
(1) evy : 0" (D) — D is a cartesian fibration, and an edge e in O°°°“*(D) is evy-cartesian
if and only (evs1oq)(e) is an equivalence in S. In particular, if evo(e) is g-cocartesian, then
e is evo-cartesian if and only if evyi(e) is an equivalence in D.
(2) If f : 2 — y is an edge in D such that q(f) is an equivalence, then there exists a evg-
cocartesian edge e over f. Moreover, an edge e over f is evg-cocartesian if and only if it is
evg-cartesian.

Proof. evg : 0°"Y(D) — D factors as
0" (D) — D x5 O(S) — D

where the first functor is a trivial fibration and the second is a cartesian fibration, as the pullback
of evgg : O(S) — S. Thus evy is a cartesian fibration with cartesian edges as indicated. Moreover,
since evg : O(S) — S is a categorical fibration, the second claim follows from [11, B.2.9]. O

We have designed our construction so that for any object 2 € D and cocartesian section S/ —» D),
the fiber of ]/.‘—“TI;ID/S(C, E) — D over z is equivalent to Funge., (C'x pS%/, Ex pS%%/). For this reason,
we think of 1*:1\1?1,3/5(—, —) as the parametrized generalization of the pairing construction ﬁﬂlp(—, =),
to which it reduces when S = AY.

9.3. Theorem. Notation as in 9.1, mD/S(C, E) enjoys the following functoriality:

(1) If ¢ is either a S-cartesian fibration or a S-cocartesian fibration and ¢ is a categorical fibration,
then ﬁl;lD/S(C, E) — S is a S-category with cocartesian edges marked as indicated in 9.1,
and 1*:1\1?1,3/5(0, E) — D is a categorical fibration.

(2) If ¢ is a S-cartesian fibration and v is a S-cocartesian fibration, then ﬁl?lD/S(C, E) — D is
a S-cocartesian fibration.

(3) If ¢ is a S-cocartesian fibration and ¢ is a S-cartesian fibration, then mD/S(Q E) — D is
a S-cartesian fibration.

Proof. (1) Tt suffices to check that Thm. 2.23 applies to the span
D & (0™ (D) x p, C, &) = ,D.

In the remainder of this proof we will verify that &°°°*"*(D) x p C — D is a flat categorical
fibration. For condition (4) we appeal to Lm. 9.2. The rest of the conditions are easy
verifications.

(2) By Lm. 9.2 and 7.4, 7 : 0°°"{(D) xp C — D is a cartesian fibration (hence flat) with an
edge e m-cartesian if and only if pry(e) is evg-cartesian and pry(e) is ¢-cartesian. Let &' be
the collection of edges e in 6°°°“*(D) X oy, p C such that for any 7-cartesian lift e’ of 7(e), the
induced edge dy(e) — d1(€’) is in &. Note that since ¢ is S-cartesian (and not just fiberwise
cartesian), & is closed under composition. Invoking Thm. 2.23 on the span

Dt & (6°(D) xp C, &) = D

we deduce that m,7"*

: sSet;rD — sSeth is right Quillen. Note that there is no conflict
of notation with the functor w7 : sSetJ“hD —> sSet] ,, defined before since & C &’ and the
two restrict to the same collections of marked edges in the fibers of 7. Since S-cocartesian

fibrations are cocartesian fibrations over D (Rm. 7.3), we conclude.
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(3) First note that  factors as a cocartesian fibration followed by a cartesian fibration, so is flat.
Let % be the collection of edges f in D such that ¢(f) is an equivalence. By Lm. 9.2, we
have that 7 : 0““"(D) Xey, p C —> D admits cocartesian lifts of edges in .Z#. Let & be
the collection of those m-cocartesian edges. Invoking Thm. 2.23 on the span

(D,.F)°" & (0°°"(D) xp C, ") £ (D, F)°
: : * L + +
we deduce that with respect to thic/artesmn model structures p,p™* : SSet/(D’y) — sSet/(Dj)
is right Quillen. We have that Funp,s(C, E) is a full subcategory of p,p™*(v). More-
over, the compatibility condition in the definition of a S-cartesian fibration ensures that
Funp,g(C, E) — D inherits the property of being fibrant in sSetj'( D.7)" Another routine

verification shows that ﬁﬂlp /s(C, E) — D is indeed S-cartesian.
O

9.4. Lemma. Let C — C' be a monomorphism between S-cartesian or S-cocartesian fibrations over
D and let E — D be a S-fibration. Then the induced functor

Funp,s(C', E) — Funps(C, E)
is a categorical fibration.

Proof. Given a trivial cofibration A — B in sSetjqya1, Wwe need to solve the lifting problem

A —— Funp,5(C", E)

B — Funp,s(C, E).

This diagram transposes to

A xp 0 (D) xp C' U B xp 0““ YD) xpC — E
AxpOccart(D)x pC o ‘/
B XD ﬁcocart(D) Xb Cl D.

By the proof of Thm. 9.3, 0<“"(D) xp C —> D is a flat categorical fibration. Therefore, by [11,
B.4.5] the left vertical arrow is a trivial cofibration in sSetjoyal. |

For later use, we analyze some degenerate instances of the S-pairing construction.
9.5. Lemma. There is a natural equivalence f‘u\/nD/S(D,E) 5E of S-categories over D.
Proof. The map is induced by the identity section tp : D — £°¢( D) fitting into a morphism of
spans
D
e
WD —— (0°°"Y(D),&) — 4D.

By Lm. 3.2(1"), ¢p is a cocartesian equivalence in sSet;rS via the target map. Since the cocartesian
+

model structure on sSet JiD is created by the forgetful functor to sSetj‘S, the assertion follows. [
9.6. Lemma. Let C' — D’ be a cartesian fibration of co-categories and let E' be a S-category. For
all s € S, there is a natural equivalence

Funpy5/5(C" x S, D' x E')s =5 Funp:(C', D' x E.)

of cartesian fibrations over D'.
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Proof. The lefthand side is defined using the span
(D) x {s} «—— ((D')* x {s}) xprxs (0D x S) xp: C', &) —— St

with & as in the proof of Thm. 9.3. Cocartesian edges (over S) in D’ x S are precisely those edges
which become equivalences when projected to D', so &°°“™(D’ x S) = Fun((A')*, (D")™) x €(S),
and the identity section tps : D’ — Fun((A')f, (D")™) is a categorical equivalence. Therefore, the
map

(D' x 8%/)F — ((D')* x {s}) Xprug (O (D' x S),&)
induced by ¢p- is a cocartesian equivalence in sSet'/"S. Since C' x S — D’ x S is a cartesian fibration,
it follows that

(C”)h X () — (D) x {s}) Xprxg (O (D' x 8) xp C',&")
is also a cocartesian equivalence in sSetj‘S. Finally, using the inclusion €’ x {s} — C’ x S*/, we
obtain a morphism from the span
(D)t +— (C")F —— {s} C §*

through a cocartesian equivalence in SSet;rS. This yields the equivalence of the lemma. O

Directly from the definition, we have that for an object z € D, the fiber Fun p/s(C, E)y is isomor-
phic to Fung (Cy, E;). We now proceed to identify the S-fiber Funp /g(C, E),.
9.7. Proposition. There is a x-functor
€ E‘EI;D/S(C: E)y — MQ(O@ Ey)

which is a cocartesian equivalence in sSet/Z,

Proof. We first define the z-functor €*. The data of maps of marked simplicial sets
A — Funp5(C, E),
A — yFun, (Cy, (B x5 D))
over z is identical to the data of maps
A x, 2t xp (0°°°"Y(D), &) xp yC — 4E
A Xy O0(2)* Xevy oevy,p tC — 1 E

over D (where & is the collection of edges e in &“°“*"*(D) such that evg(e) and evy(e) are cocarte-
sian). We have a commutative square

evo

ﬁ@)ﬂ Qﬂ

l O(evy) l evy

(Ot D), &) evo .D
which defines the functor € : &(z) — z X p €°°°*(D), and this in turn induces the functor ¢*. To
show that €* is a cocartesian equivalence, it will suffice to show that € is a trivial fibration, for then a
choice of section o and homotopy ¢ o € ~ id will furnish a strong homotopy inverse to €* in the sense
of 9, 3.1.3.5]. Since we have a pullback diagram

ﬁ(@) D XFun(Al,D) Fun(Al X Al, D)

le ¢

z Xp (D) Fun(A2, D)
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it will further suffice to show that € is a trivial Kan fibration. € factors as the composition
D Xpun(ar,p) Fin(A! x A, D) <5 Fun(A2, D) <5 Fun(A2, D).

where € is defined by precomposing by the inclusion i : A2 — A x Al which avoids the degenerate
edge for objects in D Xpyn(ar,py Fun(A! x A', D), and € is precomposition by A} — A% ¢ is a
trivial fibration since A — A? is inner anodyne. To argue that €” is a trivial fibration, first note that
¢’ inherits the property of being a categorical fibration from i* : Fun(A! x Al, D) — Fun(AZ, D).
Define an inverse ¢/’ by precomposing by the unique retraction r : A" x A’ — AZ? chosen so that
roi = id. Then ¢” is a section of ¢’ and one can write down an explicit homotopy through equivalences
of the identity functor on D Xpyn(ar, py Fun(A* x A, D) to 6” o €”, so €” is a trivial fibration. [

D-parametrized slice. We now study another slice construction defined using the S-pairing con-
struction.

9.8. Construction. Let ¢ : C' — D be a S-cocartesian fibration and let F': C — FE be a S-functor
over D. Then F defines a cocartesian section

TF D — ].E‘a;lD/S(C,E)
as adjoint to the functor &°°“"*(D) X ¢y, p C — C Ly E. Define

E@F)/S — p X Fanp s (C,E) FunD/s(C*D D, E)

and let 7y ) denote the projection E@F/S _, D.
Given an object x € D, the functor 7 : D — l?uiD /s(C, E) induces via pullback a z-functor

TR, 1L —> mD/S(C, E),.
We also have the z-functor

O'Fl S M&(sz EE)
adjoint to
T F,

O(z) xz Cyp 22 Cp — By

An inspection of the definition of the comparison functor €* of 9.7 shows that the triangle

TFy ——o

z — Funp,s(C, E),

N

commutes. Recalling the definitions

(BIS), =g xe— o, s(0,m), Funps(Cxp D, E)y

[

(Ez) el = g XFun, (Cy,Eq) Fun, (Cy *y 2, Ey)
we therefore obtain a comparison z-functor
¢ (BWD9, s (B,)Fe/z,

9.9. Corollary. The functor i is a cocartesian equivalence in sSet}Lg.

Proof. By [9, 3.3.1.5], we have to verify that ¢ induces a categorical equivalence on the fibers. But
after passage to the fiber over an object e = [z — y] in z, by Lm. 4.8 9, is a functor between two
pullback squares in which one leg is a cartesian fibration. Therefore, by Prp. 9.7 and [9, 3.3.1.4], v,
is a categorical equivalence. O

9.10. Proposition. 7y ) : E@F)/S _, D is a S-cartesian fibration.
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Proof. By Lm. 9.4, m(4 ) is a categorical fibration. By Thm. 9.3, Lm. 9.4, and Lm. 4.8, the functor
(1&)s : Funps(C *p D, E)s —> Funp5(C, E),

over D, satisfies the hypotheses of [9, 2.4.2.11], hence is a locally cartesian fibration. To then show
that (u&)s is a cartesian fibration, it suffices to check that for every square

(G Corpw —> Bu] — |G Cyayy — B,

[H:CQ*QQHEQ} — [H’:Cg*yg—» Eg}
in FunD/S(C'*D D, E), lying over an edge e : * —> y in Dy, if the horizontal edges are cartesian lifts
over e and the right vertical edge is (1) ,-cartesian, then the left vertical edge is (¢f)s z-cartesian.
In other words, if we let ) : Cy *y £ —> Cy %y y and €* : E, — E, denote choices of pushforward and
pullback functors, then we want to show that given G ~ e* oG’ oe;, H ~ e¢* o H' o ey, and G|y ~ H'|y,

we have that G|, ~ H|; this is clear. We deduce that (74 p))s, being pulled back from (i), is a
cartesian fibration. For the final verification, let us abbreviate objects

(x €D, [G:Cyprgz —> Ey| : Gle, = Fy) € B(®.F)/S

as [G : Cy *y & —> Ey], the restriction to C, equaling F, being left implicit. We must check that
given a square
l ’ J e’

ay
y—y
in D lying over « : s —> t with the vertical edges in the fiber and the horizontal edges cocartesian
lifts of «, and given a lift of that square to a square

[G:Céa@gﬂE&]—» [G/CL'*L'I—I*’EL'}

| |

[H:Cyryy — By — [H': Cyryy — By

in E(®)/3 with the horizontal edges cocartesian lifts of o and the left vertical edge (T4, 7)) s
cartesian, then the right vertical edge is (4, p))¢-cartesian. We will once more translate this com-
patibility statement into a more obvious looking one so as to conclude. Let e, e, ef, ¢* be defined as
above. Let o* : 2/ — z, a* : y' —> y be choices of pullback functors (e.g. the first sends a cocartesian
edge f: 2’ — zto foa, : x —> z), and also label related functors by a*. Then the cocartesianness of
the horizontal edges amounts to the equivalences G’ ~ Goa* and H' ~ H o a*, and the cartesianness
of the left vertical edge amounts to the equivalence G|z =~ (e¢* o H o er)|,. Our desired assertion now
is implied by the homotopy commutativity of the diagram

o™ E3

G|
—z— b,
Q Y
(the content being in the commutativity of the first square), for this demonstrates that G'|, ~

(e oH oef)|y. O

9.11. Lemma. Letp: W — S, q: D — S be S-categories and let 1 : W — D be a S-fibration
such that for every object s € S, 75 is a cartesian fibration.

(1) Suppose that:

rs %\&
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(a) For every object x € D, there exists an initial object in W.
(b) For every p-cocartesian edge w — w' in W, if w is an initial object in Wy, then w' is
an initial object in Wy ().
Let W/ C W be the full simplicial subset of W spanned by those objects w € W which are
initial in Wy and let 7' = wlw:. Then W' is a full S-subcategory of W and ©' is a trivial
fibration.
(2) Let o : D — W be a S-functor which is a section of w. Then o is a left adjoint of w relative

to D if and only if, for every object x € D, o(x) is an initial object of W.

Proof. (1) Condition (b) ensures that W' is a S-subcategory of W. By [9, 2.4.4.9], for every
object s € S, w is a trivial fibration. In particular, 7’ is S-cocartesian fibration (the com-
patibility condition being vacuous since all edges in W/ are 7.-cocartesian). By Rm. 7.3, 7/
is a cocartesian fibration. As a cocartesian fibration with contractible fibers, 7’ is a trivial
fibration.

(2) Since relative adjunctions are stable under base change, if ¢ is a left adjoint of 7 relative to
D, passage to the fiber over € D shows that o(z) is an initial object of W,. Conversely, if
for all x € D, o(z) is an initial object of Wy, then by [9, 5.2.4.3], o, is left adjoint to 7, for
all s € S. Since o is already given as a S-functor, this implies that o is S-left adjoint to m;
in particular, o is left adjoint to 7. The existence of ¢ implies the hypotheses of (1), so ¢ is
fully faithful. Now by the definition [11, 7.3.2.1], o is left adjoint to 7 relative to D.

|

We now connect the construction Funp,g(—, —) with Fung(—, —). To this end, consider the com-
mutative diagram

ﬁ(S)u Xg hC

O(S)t x5 (0™ (D) xp C, &) —> (0 (D) xp C, &) —3 St

where the map i is induced by the identity section D —> @°¢™(D).

9.12. Lemma. ¢ is a homotopy equivalence in sSet?S (considered over S viap: C — S).

Proof. Define a map h' : 0(S) xg 0°°°"(D) — Fun(Al, 0(S) x5 0°°“*(D)) to be the product of
the following three maps:

(1) Choose a lift ¢
Fun(A{01}9) =L Fun(AZ9)
Fun(A?, S) —— Fun(A%,S)

and let A! x A — A? be the unique map so that the induced map Fun(A?2, S) — Fun(A! x
Al S) = Fun(Al, 0(9)) sends (s — t — u) to [s —> t] —> [s —> u]. Use these two maps
to define

O(S) x5 0 (D) xp C —> O(S) x5 O(S) = Fun(A2, ) — Fun(Al, 6(S)).
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(2) Use the unique map A! x A! — A! which sends (0,0) to 0 and all other vertices to 1 to
define

G(S) x5 0% (D) xp C —> (D) — Fun(Al, &<m(D)).

(3) The degeneracy map sg : C —> Fun(Al, C) defines

0(8) x5 0°“(D) xp C — C — Fun(A',0).
Then A’ is adjoint to a map of marked simplicial sets over S
h:(AY x 0(9)* x5 (0°°™Y(D) xp C,&) — O(S)* x5 (0 (D) xp C,&)
such that hg = id and hy factors as a composition
O(8)! x5 (D) xp C,&) 5 O(S) x5,C 5 O(8)t x5 (6° YD) xp C,&)
where 7 is defined by
O(S)! x5 (0°°“"(D) xp C, &) — Fun(A2, )! x g ,C 1% 6(S)F x5 ,C.

Our choice of ¢ ensures that r o7 = id, completing the proof. O

Note that for any S-fibration 7 : X — D, the S-category SectD/S(w) defined in 8.4 may be

identified with (evo).(prp)*(;:X — ;D). Combining Lm. 9.12, Lm. 2.26, and Lm. 2.27, we see that
if F is a S-category and C' — D is S-cocartesian or S-cartesian, then the map induced by

i+ Sectp, g (Funps(C, B x5 D)) — Fung(C, E)

is a equivalence of S-categories. Moreover, a chase of the definitions reveals that for every S-functor
F:C — FE, we have an identification

i* o Sectpg(Trxg) = 0F 1 S — Fung(C, E).
We thus have a morphism of spans

MD/S(TFqu)

S SectD/S(mD/S(C,E Xg D)) — SeCtD/S(ﬁlD/S(C*D D,E Xg D))

i ‘ i

S °F Fung(C, E) Fung(C +p D, E).

The right horizontal maps are S-fibrations by Lm. 9.4 and [2, 9.11(2)], so taking pullbacks yields
an equivalence

(9.12.1) Sect /5 ((E x5 D)#F*0/5) =, g x

We are now prepared to introduce the main definition of this section.

OF,

Fung(c,E) Fung(Cxp D, E).

9.13. Definition. Let ¢ : C'— D be a S-cocartesian fibration. A S-functor F:CxpD— Eisa
D-parametrized S-colimit diagram if for every object x € D, the z-functor Flc, 4,z : Cp %z 2 —> Ey
is a s-colimit diagram.

9.14. Proposition. Let ¢ : C — D be a S-cocartesian fibration, let F': C'— E be a S-functor, and
let F:Cxp D —s E be a D-parametrized S-colimit diagram extending F. Then the section
ids X 01 S — S X5 pun (0,5) Fung (Cxp D, E)
is a S-initial object.
Proof. Combine Eqn. 9.12.1, Lm. 9.11(2), and Cor. 8.5. O

We have the following existence and uniqueness result for D-parametrized S-colimits.

9.15. Theorem. Let ¢ : C' —> D be a S-cocartesian fibration and let F' : C' — E be a S-functor.
Suppose that for every object x € D, the s-functor Flc, : Cy — Es admits a s-colimit. Then
there exists a D-parametrized S-colimit diagram F : C xp D — E extending F. Moreover, the full
subcategory of {F'} Xpung(c,p) Funs(C xp D, E) spanned by the D-parametrized S-colimit diagrams
coincides with that spanned by the initial objects.
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Proof. By Prp. 9.10 and Cor. 9.9, the functor

T(p,Fxo) (E X g D)(¢’F><¢)/S — D
is a S-cartesian fibration with z-fibers equivalent to (Eé)(F lez:9)/ - Our hypothesis ensures that the
conditions of Lm. 9.11(1) are satisfied, so (4 px4) admits a section o which is a S-functor that selects

an initial object in each fiber. The resulting S-functor D — FAu;D/S(C*D D, E xg D) covering Tpyx ¢

is adjoint to a S-functor F : C«p D —> E extending F, which is a D-parametrized S-colimit diagram.
Having proven existence, the second statement now follows from Prp. 9.14. ([

Thm. 9.15 also admits the following ‘global’ consequence.

9.16. Corollary. Suppose that E is S-cocomplete. Then U : Fung(Cxp D, E) — Fung(C, E) admits
a left S-adjoint L which is a section of U such that for every object F' : Cs — Eg, L(F) is a
Dg-parametrized S*/ -colimit diagram.

Proof. The assumption that E is S-cocomplete implies that E; is s-cocomplete for all s € S. By
Thm. 9.15 and the stability of parametrized colimit diagrams under base change, the conditions of
Lm. 9.11(1) are satisfied. Thus U admits a section L which selects an initial object in each fiber,
necessarily a parametrized colimit diagram. By Lm. 9.11(2), L is a left adjoint of U relative to
Fung(C, E); in particular, L is S-left adjoint to U. |

Application: Functor categories.

9.17. Proposition. Let K, I, and C be S-categories.

(1) Suppose that for all s € S, Cs admits all Ks-indexed colimits. p: K xg S — Fung(I,C) is a
S-colimit diagram if and only if, for every object x € I over s,

Ksxs s i Fun, (1, Cs) =2 Cs

is a S/ -colimit diagram.
(2) A S-functor p : K — Fung(I,C) admits an extension to a S-colimit diagram p if for all
x €1, evy ops admits an extension to a S5/ -colimit diagram.

Proof. We prove (1), the proof for (2) being similar. Let p’ : (K xg 1) %7 I = (K x5S) xg I — C be
a choice of adjoint of p under the equivalence Fung(K *g S,Fung (I, C)) ~ Fung((K xs S) x5 I,C).
By Thm. 9.15 applied to the S-cocartesian fibration K xg I — I and the hypothesis on C, there
exists an [-parametrized S-colimit diagram p” extending p’ = p/|kx 7. By Prp. 9.14, p” defines an
S-initial object in

S X pun (5 x s 1,0) Fung (K x s I) %7 I,C) ~ Fung (1, C) 9/

so its adjoint is a S-colimit diagram. For the ‘if” direction, supposing that p is a S-colimit diagram,
then by the uniqueness of S-initial objects, p” is equivalent to p’. Then ev, op, is equivalent to pg ,

which is a S%/-colimit diagram by definition of I-parametrized S-colimit diagram. For the ‘only if’
direction, supposing that all the ev, p, are S5/ -colimit diagrams, we get that p’ is a I-parametrized
S-colimit diagram, so is equivalent to p”. O

9.18. Corollary. Suppose C is S-cocomplete and I is a S-category. Then Fung(I,C') is S-cocomplete.

10. KAN EXTENSIONS

We now combine the theory of S-colimits parametrized by a base S-category D and that of free
S-cocartesian fibrations to establish the theory of left S-Kan extensions.

10.1. Definition. Suppose a diagram of S-categories

c L F

%W/
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where by the ‘2-cell’ n we mean exactly the datum of a S-functor n: C x A! — F restricting to F'
on 0 and Go ¢ on 1. Let

G': (C xp Og(D))xp D ™3 D Y E,
let
9(0 XD ﬁs(D)) XAl — F
be the natural transformation adjoint to G : C xp Og(D) — Os(E), let
n :(C xp Os(D)) x A' — C x A' L E
be the natural transformation obtained from 7, and let §’ = 6 o r’ be a choice of composition in
Fung(C xp Os(D), E). Let
r: Funs((C’ XD ﬁS(D)) *xD D,E) —> FunS(C’ XD ﬁs(D),E)

denote the restriction functor. By Lm. 4.8, we may select a r-cartesian edge e in Fung((C xp
Os(D))xp D, E) with dy(e) = G’ covering €', chosen so that e|p is degenerate. Let G = d; (e).

We say that G is a left S-Kan extension of F along ¢ if G” is a D-parametrized S-colimit diagram.
10.2. Remark. The following are equivalent:

(1) G is a left S-Kan extension of F' along ¢.
(2) For all s € S, Gy is a left S*/-Kan extension of F, along ¢,.
(3) For all s € S and z € Dy, G|, : ¢ — E, is a left S%/-Kan extension of F|¢, : Cy —> E;
along ¢, : Cy — 2.
In other words, our notion of S-Kan extension generalizes the concept of pointwise Kan extensions.

We can bootstrap Thm. 9.15 to prove existence and uniqueness of left S-Kan extensions.

10.3. Theorem. Let ¢ : C — D and F : C — E be S-functors. Suppose that for every object
x € D, the S*/ -functor

CxpDt—C, 5 E,
admits a S*/-colimit. Then there exists a left S-Kan extension G : D — E of F along ¢, uniquely
specified up to contractible choice.

Proof. We spell out the details of existence and leave the proof of uniqueness to the reader. By Thm.
9.15, there exists a D-parametrized S-colimit diagram

F: (OXD ﬁS(D))*DD‘)E
extending C' xp Og(D) — C -£> E. Let G = F|p. Define a map
h:CXAl — (CXD ﬁs(D))*DD
over D x Al as adjoint to (C(M)C xp Os(D),C -2 D) and let n = F o h, so that 7 is a natural
transformation from F to G o ¢.
We claim that n exhibits G as a left Kan extension of F' along ¢. To show this, we will exhibit

a r-cartesian edge e from F to G’ such that the restriction 7(e) of e to C' xp Os(D) is a choice of
composition 6 o n’. Define

e’ : (C XD ﬁs(D)) *DD X Al —> (C XD ﬁs(D)) *DD

over D x Al as adjoint to (id,7p), and let e = F o €', so that e is an edge from F to G’. Since
(mp)|p = idp, e|p is a degenerate edge in Fung(D, E), so e is r-cartesian.
To finish the proof, we need to introduce a few more maps. Define

a = (prg,a’): C xp Os(D) x A' — C xp O5(D)
where o' is adjoint to
C xp Os(D) — Os(D) = Fung(S x A', D) ™% Fung(S x Al x A, D).
Here min : A x A! — Al is the functor which takes the minimum. Define

B:CXDﬁs(D)XAlHﬁs(D)XAlﬂD.



PARAMETRIZED HIGHER CATEGORY THEORY 61

Use o and S to define
’y:CXD ﬁs(D) XAI XAl — (C XD ﬁs(D))*DD

so that on objects (c, ¢c EN d), v sends A x A to the square
(¢, pc = ¢c) — oc

l(z‘d,n Jf
(e, dc L d) — d.

Then F o« defines a square

Foprs A Gogoprq

5 ls

Foprg ERICENYE

in Fung(C xp Os(D), E), which proves that r(e) ~ 0 on'. O
We also have the Kan extension counterpart to Cor. 9.16.
10.4. Theorem. Let ¢ : C'— D be a S-functor and E a S-category. Suppose that E is S-cocomplete.
Then the S-functor
¢" : Fung(D, E) — Fung(C, E)

given by restriction along ¢ admits a left S-adjoint ¢ such that for every S-functor F': C — E, the
unit map F — ¢* 0 F exhibits o1 F as a left S-Kan extension of F' along ¢.
Proof. Factor ¢ as the composition

C ‘S C xp Os(D) - (C xp Os(D)) p D ™5 D.

Then ¢* factors as the composition
Fung (D, B) “5 Fung((C x p Os(D)) xp D, B) = Fung(C xp 5(D), E) “% Fung(C, B).

By Prp. 7.7 and Cor. 8.3, pry, is left S-adjoint to ¢¢,. Since ip is right S-adjoint to mp, by Cor. 8.3
again ¢, is left S-adjoint to n},. By Thm. 9.15, ¢* admits a left S-adjoint L which extends functors
to D-parametrized S-colimit diagrams. Let ¢ be the composite of these three functors. The proof of
Thm. 10.3 shows that ¢(F) is as asserted. O

The next proposition permits us to eliminate the datum of the natural transformation n from the
definition of a left S-Kan extension when ¢ is fully faithful.

10.5. Proposition. Suppose ¢ : C —> D is the inclusion of a full S-subcategory. Then for any
left S-Kan extension G of F' : C — E along ¢, n is a natural transformation through equivalences.
Consequently, G is homotopic to a functor F : D — E which is both an extension of F and a left
S-Kan extension (with the natural transformation F — F o ¢ = F chosen to be the identity).

Proof. Let G : (C xp Os(D))*p D —> E be as in the definition of a left S-Kan extension. Because
D-parametrized S-colimit diagrams are stable under restriction to S-subcategories,

(G”)C : (C XD ﬁs(D) XD C) *C C —-F
is a C-parametrized S-colimit diagram. The additional assumption that C is a full S-subcategory has
the consequence that (C'x pOs(D)xpC) =2 Os(C). Also, for any object 2 € C', the inclusion z-functor
iy : & —> C/2 is g-final, using the first criterion of Thm. 6.7. Therefore, O5(C) ¢ C =5 C L5 E is
a C-parametrized S-colimit diagram extending 0s(C) <% C' 5 E, so (G")¢ ~ F o 7.
The map h in the proof of Thm. 10.3 factors as

C x Al L,» ﬁs(C) *xC C — (C XD ﬁs(D)) *D D.
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We have the chain of equivalences
n~G"oh~Forcoh' =Foprg,
proving the first assertion. For the second assertion, use that
(:D x {1}) U,cx 1y GO x (AN)F) — 4D x (A1)
is a cocartesian equivalence in sSeth to extend (G,n) to a homotopy between G and an extension

F, which is then necessarily a left S-Kan extension. |

10.6. Corollary. Suppose ¢ : C —> D a fully faithful S-functor and E a S-cocomplete S-category.
Then the left S-adjoint ¢, to the restriction S-functor ¢* exists and is fully faithful.

Proof. Combine Thm. 10.4 and Prp. 10.5. ]
As expected, S-colimit diagrams are examples of S-left Kan extensions.

10.7. Proposition. Suppose ¢ : C'— D a S-cocartesian fibration and F:C+pD —> E a S-functor
extending F' : C — E. Then F is a D-parametrized S-colimit diagram if and only if F' is a S-left
Kan extension of F.

Proof. We may check the assertion objectwise on D, so let x € D;. Consider the commutative diagram

Cy — (s

[ =]

C XCxpD (C*D D)/£ — Eﬁ.

The value of a D-parametrized colimit of F on z is computed as the S*/-colimit of (Fs)lc,, and that

of a S-left Kan extension of F' as the S*/-colimit of Fs o pri. Therefore, it suffices to prove that 6 is
z-final. Let f : x — y be an object in z, i.e. a cocartesian edge in D, which lies over s — ¢. Then
0+ is equivalent to the inclusion

Cy = Cy X ()= ((Cy)P)1 — Cy xcyup, b, (Coxp, Di)Y.

Applying Lm. 10.8 to the map C; — C xp, D; of cocartesian fibrations over Dy, we deduce that 0
is final. O

10.8. Lemma. Let X — Y be a map of cocartesian fibrations over Z and let y € Y be an object over
z € 8. Then the inclusion X, Xy, YZ/y — X xy Y'Y is final.

Proof. By the dual of [11, 3.4.1.10], X xy Y/¥ — Z/# is a cocartesian fibration. We have a pullback
square

X, xy, Y/Y — X xy Y/V
(z} —%= s 7/2,

Since the bottom horizontal map is final and cocartesian fibrations are smooth, the top horizontal
map is final. O

As with S-colimits, S-left Kan extensions reduce to the usual notion of left Kan extension when
taken in a S-category of objects.

10.9. Proposition. Suppose a diagram of S-categories
C L} ES
| >
¢ /

G
D

The following are equivalent:
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(1) G is a left S-Kan extension of F along ¢.
(2) GT is a left Kan extension of F'' along ¢.
(3) For all objects s € S, GT|p, is a left Kan extension of F'|c, along ¢s.

Proof. We first prove that (1) and (2) are equivalent. Factor ¢ : C — D through the free S-cocartesian
fibration on ¢:
) Lo F\rcocart((b)
¢:C —=CxpOsD—5D.

Since (¢ is S-left adjoint to prs, it is also left adjoint. Therefore, the S-left Kan extension resp. the
left Kan extension of F resp. F'T along tc is computed by F o pry resp. FTopr,. By transitivity of
Kan extensions, we thereby reduce to the case that ¢ is S-cocartesian. The claim now follows easily
by combining Prp. 5.4 and Prp. 10.7.

We next prove that (2) and (3) are equivalent. For this, it suffices to observe that for all objects

d € D over some s € S, Cs Xp, Dﬁd —> C xp D/% s final by Lm. 10.8 applied to C —> D. ]

11. YONEDA LEMMA

By Prp. 5.4, Topg is S-cocomplete, so by Cor. 9.18, the S-category of presheaves Ps(C) =
@S(CUOP,TopS) is S-cocomplete. The S-Yoneda embedding j : C — Pg(C) was constructed in

[2, §10] via straightening the left fibration ﬁNS(C’) — C¥P xg C. It was shown there that j is fully
faithful. In this section, we prove that Pg(C) is the free S-cocompletion of C.

11.1. Lemma (S-Yoneda lemma). Let j : C — Pg(C) denote the S-Yoneda embedding. Then the
identity on Pg(C) is a S-left Kan extension of j along itself.

Proof. By Prp. 9.17, it suffices to show that for every s € S and object « € Cj, ev, : Ps(Cs) — Top,_

is a 5%/ -left Kan extension of ev, Js- To ease notation, let us replace S s/ by S and suppose that s € S
is an initial object.

We claim that (ev, j)T : C — Top is homotopic to Map(x, —). By definition of the S-Yoneda em-
bedding, (ev, j)' classifies the left fibration evy : Og(C),—, —> C pulled back from Og(C) —> C°P x
C via the cocartesian section o : S — C"°P defined by o(s) = z. By [9, 4.4.4.5], it suffices to show
that 4d, is an initial object in 55(0)36%. For this, because s € S is an initial object we reduce to
checking that for all edges o : s — ¢, the pushforward of id, by « is an initial object in the fiber
(0s(C) )¢ But this fiber is equivalent to €(Cy)a,e_s ~ (Cy)**/.

Applying Prp. 10.9, we reduce to showing that for all ¢t € S, (ev,)T lps(c), is a left Kan extension of
(evej)T|c,. Note that for y any cocartesian pushforward of = over the essentially unique edge s — t,
we have both that (ev, j)T|c, is homotopic to Map¢, (y, —) and (ev,)'|p(c), is homotopic to ev,
(regarding y as an object in C,°"). The inclusion C; — Pg(C); ~ Fun(C,;?, Top) factors through

P(C;) with P(C;) — Fun(C{ %7 Top) left adjoint to precomposition by the inclusion i : C¥ —» cyr.
By the usual Yoneda lemma for oo-categories, ev, : P(Cy) — Top is the left Kan extension of
Mapg, (y, —). The left Kan extension of ev, to Ps(C); is then given by precomposition by i, so is

again ev,,. |
To state the universal property of Pg(C), we need to introduce a bit of terminology.

11.2. Definition. Let F': C — D be a S-functor. We say that F strongly preserves S-(co)limits if
for all s € S, Fy preserves S*-(co)limits.

11.3. Remark. If F strongly preserves S-colimits then F' preserves S-colimits. However, the converse
is not necessarily true.

11.4. Notation. Suppose that C' and D are S-cocomplete categories. Let Funé (C, D) denote the full
subcategory of Fung(C, D) on the S-functors F which strongly preserve S-colimits. Let Fun’(C, D)
denote the full S-subcategory of Fung(C, D) with fibers Funk., (C, D) over s € S.
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11.5. Theorem. Let E be a S-cocomplete category. Then restriction along the S-Yoneda embedding
defines equivalences

Funf(Ps(C), E) = Funs(C, E)
Fung(Ps(C), E) = Fung(C, E)
with the inverse given by S-left Kan extension.

We prepare for the proof of Thm. 11.5 with some necessary results concerning S-mapping spaces.
Recall that given an oo-category C', we have a number of equivalent options for describing mapping
spaces in C. The relevant ones to consider for us are:

(1) Straightening the left fibration &(C') — C° x C, we obtain the mapping space functor
Maps(—,—) : C°? x C —> Top;

(2) Fixing an object x € C, straightening the left fibration C*/ —> C also yields the functor
Map(z, —) : € — Top;

(3) Fixing objects x,y € C, we have that the space Maps(z,y) is given by {z} x¢ €(C) x¢ {y}.

Likewise, given a S-category C', we have these possibilities:

(1) The functor Map (—, —) : C*?xsC —> Top given by the straightening of 05(C) —> C"Px g
C;

(2) Fixing an object z € C, the left fibration C2/ = z x¢ O5(C) — C;

(3) Fixing an object z € C, the left fibration C*/ — C;

(4) Fixing objects x,y € C, the left fibration z x¢ 05(C) x¢ y — y, which when specializing to
the case that = and y are in the same fiber, yields Map ,(z,y) as the fiber over {(z,y)}.

In the proof of Lm. 11.1, we showed that (1) and (3) were equivalent, and by Prp. 4.31, (2)
and (3) are equivalent. In keeping with our usual abuse of notation for mapping spaces, we will
interchangeably refer to any of these options when we write Map C(—, -).

Our next goal is to prove that Map C(—, —) preserves S-limits in the second variable, and dually,
takes S-colimits in the first variable to S-limits. For this, we need a few lemmas.

11.6. Lemma. Let F : X — Y be a map of S-cocartesian or S-cartesian fibrations over an S-category
C. The following are equivalent:

(1) F is an equivalence.
(2) For all s € S and S* -functors Z — Cs, Fun, o (Z,Xs) — Fun,¢ (Z,Y5) is an equivalence.
(8) For all s € S and c € Cs, @/Ci(g, X;) — @/Ci(g, Y;) is an equivalence.
(4) For allc e C, F,: X, — Y, is an equivalence.
If X and Y are S-left or S-right fibrations over C, then all instances of Fun can be replaced by Map.

Proof. (1) = (2): If F is an equivalence, so is Fy for all s € S. The map in question is then induced
by a map of pullbacks through equivalences in which two matching legs are S-fibrations, so is an
equivalence. (2) = (3) is obvious. (3) = (4): Given ¢ € Cs, take fibers over {s} € s and note that
Fun, ¢ (¢, Xs)s =~ Fan/c, ({c}, Xs) =~ Xe. (4) = (1): We must check that F is an equivalence for all
s € S, for which it suffices to check fiberwise over C by the hypothesis. |

11.7. Lemma. Letq: Sxs K — Top, be a S-functor which extends q : K — Top. Let X — S*g

K be a left fibration which is an unstraightening of §', and let X = X Xgyox K. Then @ is a S-limit
diagram if and only if the restriction S-functor

R: Map/S*SK(S*S K X)— Map/S*SK(K,Y) = Map/K(K,X)
is an equivalence.

Proof. Tn view of [9, 3.3.3.4], R, is a map from the limit of §'|._x. to the limit of ¢f|x_ induced by
precomposition on the diagram. But by Prp. 5.5, § is a S-limit diagram if and only if g' is a right
Kan extension of ¢, in which case both of the limits in question are equivalent to g' (s). The assertion
now follows. U

11.8. Proposition. Letp: S*g K — C be a S-functor. The following are equivalent:
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(1) D is a S-limit diagram.
orallse€ S and ce Cg, Map , (¢,p,(—)) : 8 *s Ky —> Top 18 a -limit diagram.
2) For all s € S and ¢ € Cy, Map,, (¢, P s Ks — Top,,, Se/ -limit d
B = gs/ s/
or all s €S and c € CUg, Map c,Cs = — Map c,Cs ™ 18 an equivalence.
3) Forall s € S and c € Cy, Map ., AR N | o, (e, L) I
Moreover, if the above conditions obtain, then

s/
c, C;(P@S )

M/Cﬁ( ) ZMCQ(C,ﬁé(’U))

where v is the cone point {s} € s*s K.

Proof. (2) < (3): We will show that the statements match after fixing ¢ € Cs. To ease notation, let
us replace S*/ by S and suppose that s € S is an initial object. By Lm. 11.7 and using that C¢/ is
the S-unstraightening of Map (¢, —), Map (¢, p(—)) is a S-limit diagram if and only if

Map/c(S*S K,CY) — Map/C(K7 el
is an equivalence. By Cor. 4.27, this map is equivalent by a zig-zag to the map

7Map/C (Q’ O/(ﬁS)) - Map/C(Qv C/(p"s))'

The assertion now follows. The last assertion also follows in view of the equivalence C/®:5) ~ ¢/2W)
and Map/c(g, C/PW)Y ~ ¢ x o C/PW) ~ Map (¢, p(v)).

(1) & (3): This follows from Lm. 11.6 applied to C/®5) — C/(P5) which is a map of S-right
fibrations over C. O

11.9. Corollary. Let F : C —> D be a S-functor. Then
(1) F strongly preserves S-limits if and only if for all s € S and d € Ds, Map (d,Fs(—)) :

Cs — Top,,, preserves S/ -limits.
(2) F strongly preserves S-colimits if and only if for all s € S and d € Dy, @D (Fy(=),d) =

Map .o (d, FP(—)) : CJ°P — Top,, preserves S/ -limits.

11.10. Corollary. Let C be a S-category. The Yoneda embedding j : C — Pg(C) strongly preserves
and detects S-limits.

Proof. Combine Prp. 11.8 and Prp. 9.17. |

Proof of Thm. 11.5. By Thm. 10.4, we have a S-adjunction
Jr: Fung(C, F) == Fung(Ps(C), E) :j*

with j*ji ~ id and the essential image of ji spanned by the left S*/-Kan extensions ranging over all
s € S. By Prp. 8.2, taking cocartesian sections yields an adjunction

ji: Fung(C, EF) == Fung(Ps(C), E) :j*

again with j*j; ~ id and the essential image of ji spanned by the left S-Kan extensions. Both assertions
will therefore follow if we prove that for a S-functor F': Ps(C) — E, F strongly preserves S-colimits
if and only if F is a left S-Kan extension of its restriction f = F|¢.

For the ‘only if” direction, because idp () is a S-left Kan extension of j by the S-Yoneda lemma
11.1, F = Foidp(c) is a left S-Kan extension as it is the postcomposition of idp ) with a strongly
S-colimit preserving functor.

For the ‘if’ direction, we use the criterion of Cor. 11.9. Replacing S/ by S and supposing that s € S
is an initial object, we reduce to showing that for all x € Ej, @E(F(—), z): Pg(C)"? — Top,
preserves S-limits. We first observe that F'°P is a S-right Kan extension (of f¥°P), hence so is
Map  (F(—),z) = Map_,,, (z,—) o F'*P as the postcomposition of a S-right Kan extension with a
strongly S-limit preserving functor. However, by the vertical opposite of the S-Yoneda lemma, for
any S-functor G : C"? —s Top,, the strongly S-limit preserving S-functor MPS(C)(—,G) is a

S-right Kan extension of G. Applying this for G = Map _(f(—), ), we conclude. O



66 JAY SHAH

12. BOUSFIELD—KAN FORMULA

In this section, we prove two decomposition formulas for S-colimits which resemble the classical
Bousfield-Kan formula for computing homotopy colimits. We first study the situation when S = A°.

12.1. Notation. Let K be a simplicial set and let A, be the nerve of the category of simplices of

K. We denote the first vertex map by vy : A?’;{ —> K and the last vertex map by ux : A /g — K.

By [9, 4.2.3.14], u is final. Unfortunately, this is the wrong direction for the purposes of obtaining

a Bousfield-Kan type formula, since A g is a cartesian fibration over A. To rectify this state of
affairs, we prove that vy is in fact final.

12.2. Proposition. Let K be a simplicial set. Then the first vertex map vg : A%

KT K is final.
Equivalently, the last vertex map pgor s initial.

Proof. Note that vy is natural in K and that A%’_) : sSet —> sSet preserves colimits. Recall from
[9, 4.1.2.5] that a map f : X — Y is final if and only if it is a contravariant equivalence in sSet /.
It follows that the class of final maps is stable under filtered colimits, so we may suppose that K has
finitely many nondegenerate simplices. Using left properness of the contravariant model structure,
by induction we reduce to the assertion for K = A™. But in this case vk is final by the proof of [9,
4.2.3.15] (which proves the result when K is the nerve of a category).

For the second assertion, we note that the reversal isomorphism A g0 = A g interchanges pgcor
and (vg)°P. O

12.3. Corollary (Bousfield-Kan formula). Suppose that C admits (finite) coproducts. Then for a
(finite) simplicial set K and a map p : K — C, the colimit of p exists if and only if the geometric
realization

Usero @) £ Uner, P(@(0)) E= Lyex, p(0(0)) .

exists, in which case the colimit of p is computed by the geometric realization.

Proof. The fibers of the cocartesian fibration 7 : A;’f( —> A°P are the discrete sets K,,. Therefore,
the left Kan extension of p o vk along mx exists. By Prp. 12.2, colim p ~ colim p o v, and the latter
is computed as the colimit of (7 )i(p o vk) by the transitivity of left Kan extensions. O

We also have a variant of Cor 12.3 where the coproducts over K,, are replaced by colimits indexed
by the spaces Map(A™, K). To formulate this, we need to introduce some auxiliary constructions. Let
& : W — A°P be the opposite of the relative nerve of the inclusion A — sSet; this is a cartesian
fibration which is an explicit model for the tautological cartesian fibration over A°P pulled back from
the universal cartesian fibration over Cat22. Let A : A°? — W be the ‘first vertex’ section of £ which
sends an n-simplex A% <« ... < A% to the n-simplex

AP e AL} A

l()\a)o l()\a)n,l l()\a)n

A Adn-1 An

of W specified by (Aa);(0) =0 for all 0 <i < n.

For an co-category C, let Z¢ = F%AOP(VV, C x A°P) and let Z;, C Z¢c be the sub-simplicial set on
the simplices o such that every edge of ¢ is cocartesian (with respect to the structure map to A°?P), so
that Z;, — A°? is the maximal sub-left fibration in Zc — A°P. Define a A°P-functor A;’g — Zc

as adjoint to the map AZ xae W — C which sends an n-simplex

AP e AL} A

l()\a)o l(/\a)n,l l()\a)n

Aao Aanfl Aan
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to 7o (Aa)o € Cp. Note that since A?g —> AP is a left fibration, this functor factors through Z..
Define a ‘first vertex’ functor T¢ : Zo —> C by precomposition with ¢ (using the isomorphism
Funaer (AP, C x A°P) = C' x A°P). We then have a factorization of the first vertex map as

o T
A/g Zg Zo —% C.
12.4. Proposition. The functors Yo and Yi = (Y¢)|z, are final.

Proof. We first prove that Y¢ is final by verifying the hypotheses of [9, 4.1.3.1]. Let ¢ € C. The map
Z¢ — C is functorial in €, so we have a map Z¢,, — Z¢ x¢ C./. We claim that this map is a
trivial Kan fibration. Unwinding the definitions, this amounts to showing that for every cofibration
A — B of simplicial sets over A°P, we can solve the lifting problem

BUAAXAOPW e OC/

B xan W —— C.

Since the class of left anodyne morphisms is right cancellative, we may suppose A = &. It thus
suffices to prove that Ag = B XA A : B —> B X a0 W is left anodyne for any map of simplicial sets
B — A°P. Observe that even though A is not a cartesian section, it is a left adjoint relative to A°P
to € by [11, 7.3.2.6] and the uniqueness of adjoints, since on the fibers it restricts to the adjunction
{0} —= A". Consequently, for any oo-category B and functor B — A°P by [11, 7.3.2.5] Ap is a
left adjoint, hence left anodyne. From this, we deduce the general case by using the characterization
in [9, 4.1.2.1] of the left anodyne maps X — Y as the trivial cofibrations in sSet y equipped with
the covariant model structure. Indeed, arguing as in the proof of Prp. 12.2, by induction on the
nondegenerate simplices of B we reduce to the known case B = A™.

We next prove that Z¢ is weakly contractible if C' is, which will conclude the proof for T¢. For
this, another application of (the opposite of) [11, 7.3.2.6] shows that the A°P-functor C' x A°? — Z¢
defined by precomposition by ¢ is a left adjoint relative to A° to the functor (Y ¢, idaer), because it
restricts to the adjunction ¢: C <= Fun(A"™,C) :evq on the fibers. Hence, |Z¢| ~ |C x A°?| ~ |C],
and the latter is contractible by hypothesis.

We employ the same strategy to show that Y is final. Since C.; — C' is conservative, the
trivial Kan fibration above restricts to yield a trivial Kan fibration Z’CC/ — Z¢ xo Cpy. Thus it
suffices to show that Z(, is weakly contractible if C' is. By (the opposite of) [6, 7.3], the cocartesian
fibration Z;, — A°P is classified by the functor A°? s Cate, Map(~.C) Top. Let R denote the
right adjoint to the colimit-preserving functor L : Fun(A°, Top) — Cat, left Kan extended from
the inclusion i : A C Cat.; R sends an oco-category to its corresponding complete Segal space.
Then R(C) ~ Map(—,C) 0 i°?. For any X, € Fun(A°P, Top), we have colim X ~ |L(X,)|, hence
colim R(C) ~ |(Lo R)(C')| ~ |C|, where Lo R ~ id by [10, 4.3.16]. By [9, 3.3.4.6], |Z;| ~ colim R(C),
so we conclude that |Z(,| is contractible. O

12.5. Corollary (Bousfield-Kan formula, ‘simplicial’ variant). Suppose that C' admits colimits indexed
by spaces. Then for any co-category K and functor p: K — C, the colimit of p exists if and only if
the geometric realization

colim p(x) &——=  colim  p(«(0)) E colim  p(a(0)) ...

z€Map(A9,K) aeMap(Al,K) oc€Map(A?,K)
exists, in which case the colimit of p is computed by the geometric realization.
Proof. Using Prp. 12.4, we may repeat the proof of Cor. 12.3, now using the span

T/
AP 7t T g
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We now proceed to relativize the above picture, starting with the map Y¢. Let C — S be a
S-category. Define the map

Ye,s : Funpoys/s(W x S, A% x C) — C

to be the composition of the map to F/\l\/mAupXS/S(AOP x S, A°P x C) given by precomposition by A x idg,
together with the equivalence of Lm. 9.5 of this to A° x C and the projection to C. Define T’C,S to
be the restriction of T¢ g to the maximal sub-left fibration (with respect to A°? x §).

12.6. Theorem. The S-functors Yc,s and Y, g are S-final.

Proof. For every object s € S, we have a commutative diagram

(Te,s)s

Fun s/ s(W x 8, A% x €), 85 Funyu, /5 (A% x 5, A% x ©), C,

Preg

Funae (W, A% x Cy) —2— Fuanpw (A%, A% x C,) = A% x C, C,
TCS

where the left two vertical maps are given by the natural categorical equivalences of Lm. 9.6; the
only point to note is that the equivalences of Lm. 9.5 and Lm. 9.6 coincide when the first variable is
trivial. By Prp. 12.4, Y¢. is final, so (Y¢,s)s is final. By the S-cofinality Thm. 6.7, T¢ s is S-final.
A similar argument shows that T/C, g is S-final. ]

The process of relativizing v¢ is considerably more involved. We begin with some preliminaries on
the relative nerve construction. Let J be a category.

12.7. Lemma. The adjunctions
87 sSet (5 == Fun(J, sSet) : N,
35 sSeth(J) —— Fun(J,sSet™) : N
of 19, §3.2.5] are simplicial.

Proof. Let K : J — sSet denote the constant functor at a simplical set K. We have an obvious map
Xk : N(J) x K — N;(K) natural in K and hence a map

(x,xxopr) : X x K — Ny(FsX x K) = N;F;X x Nyj(K)
natural in X and K. We want to show the adjoint
0X7K:SJ(XXK)4>SJ(X) XK

is an isomorphism. Both sides preserve colimits separately in each variable, so we may suppose
X =A" — Jand K = A™. By [9, 3.2.5.6], §7(/)(—) = N(I,_), and by [9, 3.2.5.8], for any functor
f I — J, the square

i
sSet/N(I) —_— sSet/N(J)

b

Fun(Z, sSet) /N Fun(J, sSet)

commutes. Letting I = A" x A™ and f : I — J be the structure map, we have
Fr(A™ x A™)(k,1) = (A™) ), x (A™) ;=2 AP x AL
Factoring f as A™ x A™ 2 A" LN J, we then have

a1 (A" x A™)(k) = Al x A™.
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Let G = giF(A™ x A™), so that Fy(A™ x A™)(j) = (mG)(j). Then
(1G) (1) = colim (b h(R) = ) = AF) x A™ = §,(A") () x A"

and one can verify that 0x x implements this isomorphism. For the assertion about S; b N}L, recall
that the simplicial tensor sSet x sSett — sSet™ is given by (K, X) — K* x X. Consequently, in
the above argument we may simply replace A™ by (A™)# to conclude. O

Since NF(5%) = N(J) x S*, the adjunction §7 - N lifts to an adjunction
S;S: sSet;rN(J)XS pa— Fun(J,sSeth) :NIS

between the overcategories. Moreover, for any functor f : T — S, the square

NT
Fun(J, sSeth) 25 SSet;rN(J)XS

r Jcwer
+

N?
Fun(J, sSetj‘T) sSet/N(J)XT,

commutes.

12.8. Proposition. Equip sSet;rN(J)XS with the cocartesian model structure and Fun(J, sSeth) with

the projective model structure, where sSet s has the cocartesian model structure. Then the adjunction
+ . + — Nt
§s: 58et vy ywg == Fun(J,sSet/S) Ny
is a Quillen equivalence.

Proof. We first prove that the adjunction is Quillen. Because this is a simplicial adjunction between
left proper simplicial model categories, it suffices to show that S'}' 5 preserves cofibrations and NIS pre-
serves fibrant objects. Observe that the slice model structure on sSetj‘N(J) g = (sSet;rN(J))/(N(J) X S)t
is a localization of the cocartesian model structure. Similarly, the slice model structure on Fun(.J, sSet?‘S) =
Fun(J, sSet™) /st 1s a localization of the projective model structure, since the trivial fibrations for the
two model structures coincide and postcomposition by 7 : sSet;r —> sSet™ gives a Quillen left ad-
joint between the projective model structures. Since the lift of a Quillen adjunction L: M <= N : R
to the adjunction L: M /R(z) =—= Nyy : ‘R is Quillen for the slice model structures, we deduce that
S J.s breserves cofibrations.

Now suppose F' : J — sSet}"S is fibrant. Since S is an oo-category, FF — S is a fibration in
Fun(J, sSet). Hence Ny g(F) — N(J)x S is a categorical fibration. We verify that it is a cocartesian
fibration (with every marked edge cocartesian) by solving the lifting problem (n > 1)

AG —— Njg(F)

A" —— (N(J) x S)E.

Unwinding the definitions, this amounts to solving the lifting problem

(Jo,S0)

AT —— S,

and the dotted lift exists because F(j,) is cocartesian over S with the cocartesian edges marked.
Finally, it is easy to see that marked edges compose and are stable under equivalence. We conclude
that N;S(F) is fibrant in sSeth(J)XS.
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To prove that the Quillen adjunction is a Quillen equivalence, we will show that the induced
adjunction of co-categories

3s: N((sSeth(J)xs)O) —— N(Fun(J, sSet+ $)°) 1N
is an adjoint equivalence, where N J.¢ 1s the simplicial nerve of Nt J.s and ey J.s is any left adjoint to
N"]fs. We first check that N JTS is conservative. Indeed, for this we may work in the model category:
for a natural transformation a : F — G in Fun(J, sSet |g), Ny g(F) — Nj¢(G) on fibers is given
by F(j)s — G(j)s, hence if F,G are fibrant and st( ) is an equivalence then « is as well. It now

suffices to show that the unit transformation 7 : ¢id — IV’ a SS 7. is an equivalence. We have the known
equivalence N((sSet/ (J)><S) ) >~ Fun(N(J) x S, Cato,) so it further suffices to check that the map

(id x ig)* —> (id x is)"NF g =~ NTii§fs

is an equivalence for all s € S, i : {s} — S the inclusion. Equivalently, since S} n Nj is a Quillen
equivalence ([9, 3.2.5.18]), we must show that the adjoint map

§it — (id x is)*STS
is an equivalence. This statement is in turn equivalent to the adjoint map
0: N (is)e — (id X i) NG

being an equivalence. Recall that for a functor f: T — S, f, : Fun(T, Cat,) — Fun(S, Caty,) is
induced by m,p* : sSetj‘T — sSetj‘S for the span

St T (0(S) xg T)t —L T
with 7 given by evaluation at 0 and p projection to T'. Moreover, for a functor idx f : UXT — U xS,
we may elect to use the span

wdX p

(U x S)t &% (U x 6(S) x5 T)f “Z8 (U x T)¢

to model (id X f).. Letting f =45, we see that 0 is induced by the map
Njgmep” —> (idx m) N g, p" = (id x m).(id x p)"N.
where the first map is adjoint to the isomorphism (id x 7)* st ~ Nt ,m*. Direct computation

J,5¢
reveals that this map is an equivalence on fibrant F : J —> sSet™. O

We now return to the situation of interest. Let C' be a S-category with structure map = : C' — S.
We first extend our existing notation z for objects x € C.

12.9. Notation. For an n-simplex o of C, define
o = {0} Xpun(anx{o}.0) Fn((A")” x (A" 4C) Xpun(anx{1},8) S-

12.10. Lemma. There exists a map b, : ¢ — {ma(n)} xg O(S) = S/ which is a trivial Kan
fibration.

Proof. First define a map b, : ¢ —> g to be the pullback of the map

(0, O(m))s : Fun(A™, 6 (C)) — C2" x gan Fun(A", 6(S5))
over {o} and S. Since (eg, O(m)) is a trivial Kan fibration, so is b. Next, let K be the pushout
A" x {0} Ugnyxgoy {n} x Al. We claim that the map Fun(A", &(S)) X gan S — Fun(K, S) induced
by K € A" x Al is a trivial Kan fibration. For a monomorphism A — B, we need to solve the lifting
problem

A —— Fun(A™, 0(S)) xgar S

B —— Fun(K, S).
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This transposes to
AX A" Jpyfny B x {n} - o(S)

BxA" —m —— §

and the lefthand map is right anodyne by [9, 2.1.2.7], hence the dotted lift exists as evy is a cartesian
fibration. Now define b” to be the pullback

7o = {n0} Xgan Fun(A", 0(S)) xgan S —> {mo} x gar Fun(K, §) = §7 "/
this is also a trivial Kan fibration. Finally, let b, = b o b.. O

We will regard ¢ as a S™ ™)/ or S-category via b,. We also have a target map ¢ — C®" induced
by A" x {1} € A™ x A'. This covers the target map S™ )/ — § and is a S-functor.
Define a functor Fo : A°? —s sSet7S on objects [n] by

L =
oeCn
and on morphisms « : [m] — [n] by the map o0 — o« induced by precomposition by a : A™ —s A™.

12.11. Remark. The map ¢ — o(n) is compatible with the maps b, and b, () of Lm. 12.10, hence is
a categorical equivalence (in fact, a trivial Kan fibration). Consequently, given a morphism f:x — y

in C, by choosing an inverse to f = y we obtain a map f* : y — z, unique up to contractible choice.
Moreover, if f lies over an equivalence, then f — z is a trivial Kan fibration, so we also obtain a
map f:z — y.

In order to define the S-first vertex map NIOP’ s(Fc) — C, we need to introduce a few preliminary
constructions. Let A4, C &(A™) be the sub-simplicial set where a k-simplex zoyg — ... — Tgyg IS in
A, if and only if z; < yo. For the reader’s aid we draw a picture of the inclusion A,, C (A™) for
n = 2, where dashed edges are not in As:

00 ...

01—>11

J\J

02%12%22

~_

12.12. Lemma. The inclusion A, — O(A™) is inner anodyne.

Proof. In this proof we adopt the notation [zgyo, ..., xxyx] for a k-simplex of &(A™). Let E be the
collection of edges [ab, zy] in O(A™) where x > b, and choose a total ordering < on E such that if we
have a factorization

ab —— xy

|l

a/b/ I/y/
then [a'0,2'y'] < [ab,zy]. Index edges in E by I = {0,...,N}. Define simplicial subsets A4, ; of
O(A™) such that A, ; is obtained by expanding A,, to contain every k-simplex [zoyo, ..., Zryk] With
[Zovo, kY] in E<;. We will show that each inclusion A4,,; — A, ;+1 is inner anodyne. We may
divide the nondegenerate k-simplices [xoyo, Z1Y1, ..., TkYk] in A, ;41 but not in A, ; into six classes:

> Al: z1y1 # xo(yo + 1) and y1 > yo.

> A2: xyyp = -’ITO(yO + 1).

» Bl: z1y1 = (o + 1)yo, y2 > yo, and xays # (xo + 1)(yo + 1).
> B2: x1y1 = (o + 1)yo and xoys = (o + 1)(yo + 1).
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» Cl: z1y1 # (w0 + 1)yo and y1 = yo.
> C2: z1y1 = (w0 + 1)yo and y2 = yo.
We have bijections between classes of form 1 and classes of form 2 given by

> A [zoYo, T1Y1, -, TeYk] > [Zoyo, Zo(Yo + 1), T1y1, -y TaYi]-
> B: [2oyo, To + 1y1, T2y2, .o, TkYk] = [ToYo, (To + 1)yo, (vo + 1)(vo + 1), 22y2, ..., Tryk)-
» C: [Toyo, T1Y1, -, Tiyk] = [Toyo, (To + 1)yo, X1y, s ThYk].

Moreover, this identifies simplices in a class of form 1 as inner faces of simplices in the corresponding
class of form 2. Let P be the collection of pairs 7 C 7’ of nondegenerate k — 1 and k-simplices matched
by this bijection. Choose a total ordering on P where pairs are ordered first by the dimension of the
smaller simplex, and then by A < B < C, and then randomly. Let J = {0, ..., M} be the indexing set
for P. We define a sequence of inner anodyne maps

Ani=Anio— Anint — .. — Apivm+1 = Anipr

such that A, ; j41 is obtained from A, ; ; by attaching the jth pair 7 C 7/ along an inner horn. For
this to be valid, we need the other faces of 7’ to already be in A,, ; ;. The ordering on E was chosen
so that the outer faces of 7/ are in A,, ;. The argument for the inner faces proceeds by cases:

» 7’ is in class A2: The other inner faces are also in class A2 since they contain xo(yo + 1),
hence were added at some earlier stage.

» 7’ isin class B2: The other inner faces of [zoyo, (zo + 1)yo, (xo +1)(yo + 1), 2y2, ..., T yx] are
all in class B2, except for [zoyo, (xo + 1)(yo + 1), 22, ..., Yk, which is in class A1l. Both of
these were added at an earlier stage.

» 7’ is in class C'2: The other inner faces are in class C2 or Bl since they contain (xg + 1)yo,
hence were added at some earlier stage.

O

Let E,, C (A,)1 C O(A™); be the subset of edges xoyo — x1y1 where yo = y1. Define simplicial
sets ¢’ and C” to be the pullbacks

Cl, ——— Hom((6(A*), E,),,C) C) ——— Hom((A., E.),;C)
Hom(A®,S) —0 5 Hom(¢/(A*),5)  Hom(A®,5) —° Hom(A.,S).

We now show that the map ¢’ — C” induced by precomposition by A, —> O(A®) is a trivial
Kan fibration. Indeed, in order to solve the lifting problem

OA" —— ('

ATL Cl/
we must supply a lift

4, U U@ —c

oA"Y —— 5 §

and the left vertical map is a trivial cofibration by Lm. 12.12. Let o : C" — C’ be any section. Also
let § : C’ — C be the map induced by precomposition by the identity section A® — O(A®).
Define a map ve,g : NXUP,S(FC) — C over S as follows: the data of an n-simplex of NIop7s(FC)

consists of

» an n-simplex A% « ... < A% in AP (so we have maps f;; : A% — A% for i < j);

> an n-simplex so : A — S

» a choice of ag-simplex o € Cy,;

» for 0 <i<mn,amap,: A’ — o, where o; = 0 o fo;
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such that for all 0 < i < j < n, the diagram

A’:Lﬁ

{07"'ai}c[j]J/ f:;

A ]
(S-)I{o,...k i
S

commutes. Let 7; : A x A% x Al — C denote the adjoint map.
We now define a map A,, — C to be that uniquely specified by sending for all 0 < k < n the
rectangle AF x A"=F C A, given by 00 +— 0k and k(n — k) + kn to

AF x APk idx (\a)g AF % ATk (1) Fil{1y C

where the maps (A\a)j are obtained from the first vertex section of W — A°P restricted to ae as

Se

before. One may check that the composite A,, — C — S factors as A, — A™ = S, so this defines
a n-simplex of C”. This procedure is natural in n, so yields a map Niop,s(FC) — C”. Finally,

postcomposition by 6 o o : ¢ — C' define our desired map vc,s. By Prp. 12.8, Niop,s(FC) s
is an S-category with an edge m’-cocartesian if and only if it is degenerate when projected to A°P.
These edges are evidently sent to m-cocartesian edges in C, so v¢ is a S-functor.

12.13. Theorem. The S-first vertex map vc,s : Ngop’S(Fc) — C' is fiberwise a weak homotopy
equivalence. Moreover, vc,s is S-final if either C — S is a left fibration, or S is equivalent to the
nerve of a 1-category.

Proof. Let t € S be an object and i; : {t} — S the inclusion. Then NXW’S(FC),& =~ Ni, (if Fo).
We have a map NX,,(ijFc) — A;’g =~ N1, (C,) of left fibrations over AP induced by the natu-
ral transformation if Fo —> C, which collapses each o xg {t} to a point. Moreover, this natural
transformation is objectwise a Kan fibration, so the map itself is a left fibration. Also define a map
Ni,(iiFo) — (S/1)oP as follows: in the above notation, the 7 map in the data of an n-simplex
(ae,7i : A" — 0; x5 {t}) yields a map 7y, : A% — G(S) x5 {t} = S/t, and we send the n-simplex
to o
AP (Aa"™")o (Aag)op (m70)°" (S/t)op

where al®” is (A®)°P + ... + (A®)°P. Using these maps we obtain a commutative square

NA, (i Fo) — C°P xgu (S/t)0P

L

A;”é Cep.
We claim that the map
o s NElii Fo) — (A7) xcon (C x5 8/1)7

is a categorical equivalence. Since f¢; is a map of left fibrations over A?g, it suffices to check that
for every object o € A‘/)?y the map on fibers

o x5 {t} — (SP) x g0 {mo(n)} ~ {mo(n)} xg S'*

is a homotopy equivalence. But this is the pullback of the trivial Kan fibration of Lm. 12.10 over {t}.
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We next define a map N1, (if Fc) — S/t by sending (ae,7i) to ™y © (Aa)o. Then the outer

rectangle
Nt (i: Fe) L Cxg 8/ % g
St

’

L

ATS C C = S

commutes so we obtain the dotted map v ;.

Next, we choose a section P of the trivial Kan fibration 6°“"*(C') — C x g 0(S) which restricts to
the identity section on C. P restricts to a map P : C' xg S/t —» 0°*(C) x 5 {t}, and it is tedious
but straightforward to construct a homotopy between the composition (evq P;) o vg, and (ve,s):.

Finally, we define a map v, , : A?ng g — N, (it Fc) as follows: given an n-simplex

A% —— L —— A

fo /

C xg S/t

let 0; = pre o7, and define v; : A — g; x5 {t} as the composition of the projection to A% and the
adjoint of the map P; o ;. Then (as,;) assembles to yield an n-simplex of Nan (i Fe).

Unwinding the definitions of the various maps, we identify the composition v, o v, as given by
Uoxgg/ts and the composition 0¢ ¢ o v, as given by the map A;”;rc to the factor A;’g and the map
(Hoxos/¢)°P to the factor (C xg S/%)°P. By Prp. 12.2 and the fact that final maps pull back along
cocartesian fibrations, we deduce that in

AP — AP

x5t 76 X (O xg S/ —— (C x5 8/1)oP

the long composition and the second map are both final. Consequently, ¢ o v, is a weak
homotopy equivalence. Moreover, if S is equivalent to the nerve of a 1-category then f¢ + o v%,t is
a categorical equivalence, as may be verified by checking that the map is a fiberwise equivalence
over A?g. Since ¢+ is a categorical equivalence, Ug’t is then a weak homotopy equivalence resp. a
categorical equivalence. Since vy g/ is final, vg, is then a weak homotopy equivalence resp. final.

For the last step, let j; : C; —> C xg S/* denote the inclusion. As the inclusion of the fiber over
a final object into a cocartesian fibration, j; is final. (evy P;) o j; = ide,, so by right cancellativity
of final maps, evy P; is final. We conclude that (vc,s): is a weak homotopy equivalence resp. final.
In addition, if C — S is a left fibration, (vc,s): has target a Kan complex, so is final ([11, 2.3.4.6]).
Invoking the S-cofinality Thm. 6.7, we conclude the proof. O

12.14. Remark. The above proof that the S-first vertex map v¢ g is final in special cases hinges upon
the finality of the map 6¢+ o U’c’*,t- We believe, but are unable to currently prove, that this map is
always final.

We conclude this section with our main application to decomposing S-colimits.

12.15. Corollary. Suppose that S°P admits multipullbacks. Then C is S-cocomplete if and only C
admits all S-coproducts and geometric realizations.

Proof. We prove the if direction, the only if direction being obvious. Let K be a S*/-category and
p: K —Csa S%/-diagram. First suppose that K —» S%/ is a left fibration. Consider the diagram

Yk, s/

NZ{UP’ oo/ (Fr) =5 K -5 ¢,

I

A°P x S/,
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By Thm. 12.13, the S*/-colimit of p is equivalent to that of povg g«/. Since p is S-cocartesian, by Thm.
9.15 the S*/-left Kan extension of povy g/ along p exists provided that for all n € A°? and f : s — ¢,
the S*/-colimit exists for (p o Vg 52/ )(n,f)- Lo understand the domain of this map, note that because

the pullback of p along f* : A% x S*/ — A x §%/ is given by NZUP St/ (f*Fk), the assumption that
S°P admits multipullbacks ensures that the (n, f)-fibers of p decompoée as coproducts of representable
left fibrations. Therefore, these colimits exist since C' is assumed to admit S-coproducts. Now by
transitivity of left S*/-Kan extensions, the S*/-colimit of pov g+/ is equivalent to that of pi(pov g:/),
and this exists since C' is assumed to admit geometric realizations.

Now suppose that K —> S%/ is any cocartesian fibration. Consider the diagram

’
TK,SS/

Funpoy g (W x 85/ AP x K) 25 K 25 ¢

|

AP x S5/,
By Thm. 12.6, the S*/-colimit of p is equivalent to that of po T/K,SS/' By Prp. 9.7, the (n, f)-fiber
of p’ is equivalent to (Fung., (A™ x St/ K xg.; S*), which in any case remains a left fibration. We
just showed that for all ¢ € S, C; admits S t/_colimits indexed by left fibrations. We are thereby able
to repeat the above proof in order to show that the S*/-colimit of p exists. O

13. APPENDIX: FIBERWISE FIBRANT REPLACEMENT

In this appendix, we formulate a result (Prp. 13.4) which will allow us to recognize a map as a
cocartesian equivalence if it is a marked equivalence on the fibers. We begin by introducing a marked
variant of Lurie’s mapping simplex construction.

13.1. Definition. Suppose a functor ¢ : [n] — sSet™, Ay — ... — A,,. Define M(¢) to be the
simplicial set which is the opposite of the mapping simplex construction of [9, §3.2.2], so that a m-
simplex of M (¢) is given by the data of a map a : A™ — A" together with a map 3 : A™ — Ay (o).
Endow M (¢) with a marking by declaring an edge e = («, ) of M(¢) to be marked if and only if 8
is a marked edge of A, (). Note that if each A; is given the degenerate marking, then the marking on
M (¢) is that of [9, 3.2.2.3].

13.2. Lemma. Suppose n: ¢ —> 9 is a natural transformation between functors [n] — sSet™ such
that for all 0 <i <mn, n; : A; — B, is a cocartesian equivalence. Then M(n) : M(¢) — M (y) is a
cocartesian equivalence in sSetj‘An.

Proof. Using the decomposition of M (¢) as the pushout M (¢')U 4, xan-1 AgX A" for ¢ : Ay — ... — A,
this follows by an inductive argument in view of the left properness of sSet;rAn. ]

13.3. Construction. Let X —s A™ be a cocartesian fibration, let o be a section of the trivial Kan
fibration &°¢*(X) —> X X an O'(A™) which restricts to the identity section on X, and let P = ev; oo
be the corresponding choice of pushforward functor. For 0 < i < n, define f; : X; x A — X by
Po(idx, x f!) where f/ : A — O(A™) is the edge (i = i) — (i — i+1), and let ¢ : X5~ — ... — X7
be the sequence obtained from the f; x {1}. We will explain how to produce a map M (¢) — X over
A™ via an inductive procedure. Begin by defining the map M (¢), = X,, — X,, to be the identity.
Proceeding, observe that M (¢) is the pushout

XO X A{l,...,n} — XO x A"

P

M(¢') M(9)
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with ¢’ the composable sequence X; —> ... —> X,, and the map v given by Xy x A" ! — X x
A"l M(¢'). Given amap ¢’ : M(¢') — X over A"~! we have a commutative square

fo,g’ o
Xo x Al UXOXA{I} Xo X A{l,...,ng Of; 3(

|

X x A" - A"

and the left vertical map is inner anodyne by [9, 2.1.2.3] and [9, 2.3.2.4]. Thus a dotted lift exists and
we may extend ¢’ to g : M(¢) — X.

Note that g; is the identity for all 0 < ¢ < n. Therefore, if we instead take the marking on M (¢)
which arises from the degenerate marking on the X;, then g is (the opposite of) a quasi-equivalence
in the terminology of [9, 3.2.2.6], hence a cocartesian equivalence in sSetj‘A" by [9, 3.2.2.14]. Now by
Lm. 13.2, g with the given marking is a cocartesian equivalence.

This construction of M(¢) — X enjoys a convenient functoriality property: given a cofibration
F : X — Y between cocartesian fibrations over A", we may first choose o x as above, and then define
oyto be a lift in the diagram

Foox,t
(X xan O(A")) Uy Y =253 geocart ()

Y xan O(A") — = Y xan O(A™).

Consequently, we obtain compatible pushforward functors and a natural transformation n : ¢x — ¢y,
which yields, by a similar argument, a commutative square

M (n)
M(¢x) —> M(dy)

|

X Y.

where the vertical maps are cocartesian equivalences in sSet;rAn.

13.4. Proposition. Let p: X — S and q : Y — S be cocartesian fibrations over S and let F :
X — Y be a S-functor. Suppose collections of edges &x, & of X, Y such that

(1) &Ex resp. & contains the p resp. q-cocartesian edges;
(2) For &% C &x the subset of edges which are either p-cocartesian or lie in a fiber, we have that
(X,89) C (X,8Ex) is a cocartesian equivalence in sSet?‘S, and ditto forY;
(3) F(@ﬁx) C gy,‘
(4) Forall s € S, Fy : (X5, (Ex)s) — (Ya, (6 )s) is a cocartesian equivalence in sSet™.
Let X' = (X,6x), Y = (Y,&y), and F' : X' — Y’ be the map given on underlying simplicial sets
by F. Then for all simplicial sets U and maps U — S, F[; is a cocartesian equivalence in sSet;rU.

Proof. Without loss of generality, we may assume that an edge e is in &x if and only if either e is
p-cocartesian or p(e) is degenerate, and ditto for &y. First suppose that F' is a trivial fibration in
sSetj‘S and for all s € S, F! reflects marked edges. Then F” is again a trivial fibration because F’

has the right lifting property against all cofibrations. For the general case, factor F' as X S8y
where G is a cofibration and H is a trivial fibration, and let Z’ = (Z, §7) for &7 the collection of edges
e where e is in &7 if and only if H(e) is in & . Then for all s € S, Z, — Y] is a trivial fibration in
sSet™, so as we just showed H' : Z’ —> Y is a trivial fibration. We thereby reduce to the case that
F is a cofibration.

Let % denote the collection of simplicial sets U such that for every map U — S, F}; is a cocartesian
equivalence in sSetjU. We need to prove that every simplicial set belongs to %. For this, we will
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rify the hypotheses of [9, 2.2.3.5]. Conditions (i) and (ii) are obvious, condition (iv) follows from

left properness of the cocartesian model structure and [11, B.2.9], and condition (v) follows from the
stability of cocartesian equivalences under filtered colimits and [11, B.2.9]. It remains to check that
every n-simplex belongs to %, so suppose S = A". Let

in

M(m)
M(px) =5 M(¢y)
X —E 5y
be as in Cnstr. 13.3. Let ¢/ be the sequence X — ... — X/, where the maps are the same as
¢x, and similarly define ¢}, and n’. Then we have pushout squares

M(¢x) — M(¢x) M(py) — M(dy)
| | ] |
X — X/ Y ———Y”

with all four vertical maps cocartesian equivalences in SSetj'An. Here we replace X’ by X", which

has the same underlying simplicial set X but more edges marked with X’ C X" left marked anodyne,

SO

that the vertical maps M (¢’y) — X" are defined and the squares are pushout squares (again,

ditto for Y”). Note that F defines a map F” : X" — Y.

Finally, we have the commutative square

M(@h) M n(g))

| |

X F" vy

By assumption, 1’ : ¢’y —> ¢4 is a natural transformation through cocartesian equivalences in

sSet™. By Lm. 13.2, M(n') is a cocartesian equivalence in SSetj'A”. We deduce that F”, hence F’,

is

as well. 0

13.5. Remark. By a simple modification of the above arguments, we may further prove that for any
marked simplicial set A — S, F, is a cocartesian equivalence in sSeth. We leave the details of this

to

10.
11.
12.
13.

the reader.
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