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Abstract. We develop foundations for the category theory of ∞-categories parametrized by a base
∞-category. Our main contribution is a theory of parametrized homotopy limits and colimits, which

recovers and extends the Dotto–Moi theory of G-colimits for G a finite group when the base is chosen
to be the orbit category of G. We apply this theory to show that the G-∞-category of G-spaces

is freely generated under G-colimits by the contractible G-space, thereby affirming a conjecture of

Mike Hill.
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1. Introduction

This thesis lays foundations for a theory of ∞-categories parametrized by a base ∞-category S.
Our interest in this project originated in an attempt to locate the core homotopy theories of interest in
equivariant homotopy theory - those of G-spaces and G-spectra - within the appropriate∞-categorical
framework. To explain, let G be a finite group and let us review the definitions of the ∞-categories
of G-spaces and G-spectra, with a view towards endowing them with universal properties.

Consider a category TopG of (nice) topological spaces equipped with G-action, with morphisms
given by G-equivariant continuous maps. There are various homotopy theories that derive from this
category, depending on the class of weak equivalences that one chooses to invert. At one end, we can
invert the class W1 of G-equivariant maps which induce a weak homotopy equivalence of underlying
topological spaces, forgetting the G-action. If we let Top denote the ∞-category of spaces, then we
have the identification

TopG[W −1
1 ] ' Fun(BG,Top);

inverting W1 obtains the ∞-category of spaces with G-action. For many purposes, Fun(BG,Top) is
the homotopy theory that one wishes to contemplate, but here we instead highlight its main deficiency.
Namely, passing to this homotopy theory blurs the distinction between homotopy and actual fixed
points, in that the functor TopG Fun(BG,Top) forgets the homotopy types of the various spaces
XH for H a nontrivial subgroup of G. Because many arguments in equivariant homotopy theory
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involve comparing XH with the homotopy fixed points XhH , we want to retain this data. To this
end, we can instead let W be the class of G-equivariant maps which induce an equivalence on H-fixed
points for every subgroup H of G. Let TopG = TopG[W −1]; this is the ∞-category of G-spaces.

Like with TopG[W −1
1 ], we would like a description of TopG which eliminates any reference to

topological spaces withG-action, for the purpose of comprehending its universal property. Elmendorf’s
theorem grants such a description: we have

TopG[W −1] ' Fun(Oop
G ,Top),

where OG is the category of orbits of the group G. Thus, as an ∞-category, TopG is the free
cocompletion of OG.

It is a more subtle matter to define the homotopy theory of G-spectra. There are at least three
possibilities:

(1) The ∞-category of Borel G-spectra, i.e. spectra with G-action: This is Fun(BG,Sp), which
is the stabilization of Fun(BG,Top).

(2) The ∞-category of ‘naive’ G-spectra, i.e. spectral presheaves on OG: This is Fun(Oop
G ,Sp),

which is the stabilization of TopG.
(3) The∞-category of ‘genuine’ G-spectra: Let Aeff(FG) be the effective Burnside (2, 1)-category

of G, given by taking as objects finite G-sets, as morphisms spans of finite G-sets, and as 2-
morphisms isomorphisms between spans. Let SpG = Fun⊕(Aeff(FG),Sp) be the ∞-category
of direct-sum preserving functors from Aeff(FG) to Sp, i.e. that of spectral Mackey functors.1

The third possibility incorporates essential examples of cohomology theories for G-spaces, such as
equivariant K-theory, because G-spectra in this sense possess transfers along maps of finite G-sets,
encoded by the covariant maps in Aeff(FG). It is thus what homotopy theorists customarily mean by
G-spectra. However, from a categorical perspective it is a more mysterious object than the∞-category
of naive G-spectra, since it is not the stabilization of G-spaces. We are led to ask:

Question: What is the universal property of SpG? More precisely, we have an adjunction

Σ∞+ : TopG SpG :Ω∞

with Ω∞ given by restriction along the evident map Oop
G Aeff(FG), and we would like a universal

property for Σ∞+ or Ω∞.

Put another way, what is the categorical procedure which manufactures SpG from TopG?

The key idea is that for this procedure of ‘G-stabilization’ one needs to enforce ‘G-additivity’ over
and above the usual additivity satisfied by a stable ∞-category2: that is, one wants the coincidence
of coproducts and products indexed by finite sets with G-action. Reflecting upon the possible homo-
topical meaning of such a G-(co)product, we see that for a transitive G-set G/H,

∐
G/H and

∏
G/H

should be as functors the left and right adjoints to the restriction functor SpG SpH , i.e. the
induction and coinduction functors, and G-additivity then becomes the Wirthmüller isomorphism. In
particular, we see that G-additivity is not a property that SpG can be said to enjoy in isolation, but

rather one satisfied by the presheaf SpG of ∞-categories indexed by OG, where SpG(G/−) = Sp(−).
Correspondingly, we must rephrase our question so as to inquire after the universal property of the
morphism of OG-presheaves Σ∞+ : Top

G
SpG, where Top

G
(G/−) = Top(−) and Σ∞+ is objectwise

given by suspension.
We now pause to observe that for the purpose of this analysis the groupG is of secondary importance

as compared to its associated category of orbits OG. Indeed, we focused on G-additivity as the
distinguishing feature of genuine vs. naive G-spectra, as opposed to the invertibility of representation
spheres, in order to evade representation theoretic aspects of equivariant stable homotopy theory.
In order to frame our situation in its proper generality, let us now dispense with the group G and
replace OG by an arbitrary ∞-category T . Call a presheaf of ∞-categories on T a T -category. The

1This is not the definition which first appeared in the literature for G-spectra, but it is equivalent to e.g. the

homotopy theory of orthogonal G-spectra by the work of Guillou-May.
2We first learned of this perspective on G-spectra from Mike Hopkins.
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T -category of T -spaces Top
T

is given by the functor T op Cat∞, t 7→ Fun((T/t)
op,Top). Note

that this specializes to Top
G

when T = OG because OH ' (OG)/(G/H); slice categories stand in for
subgroups in our theory. With the theory of T -colimits advanced in this thesis, we can then supply a
universal property for Top

T
as a T -category :

1.1. Theorem. Suppose T is any ∞-category. Then Top
T

is T -cocomplete, and for any T -category
E which is T -cocomplete, the functor of evaluation at the T -final object

FunL(Top
T
, E) E

induces an equivalence from the ∞-category of T -functors Top
T

E which strongly preserve T -
colimits to E. In other words, Top

T
is freely generated under T -colimits by the final T -category.

When T = OG, this result was originally conjectured by Mike Hill.
To go further and define T -spectra, we need a condition on T so that it supports a theory of spectral

Mackey functors. We say that T is orbital if T admits multipullbacks, by which we mean that its finite
coproduct completion FT admits pullbacks. The purpose of the orbitality assumption is to ensure
that the effective Burnside category Aeff(FT ) is well-defined. Note that the slice categories T/t are

orbital if T is. We define the T -category of T -spectra SpT to be the functor T op Cat∞ given by

t 7→ Fun⊕(Aeff(FT/t),Sp). We then have the following theorem of Denis Nardin concerning SpT from

[13], which resolves our question:

1.2. Theorem (Nardin). Suppose T is an atomic3 orbital ∞-category. Then SpT is T -stable, and for
any pointed T -category C which has all finite T -colimits, the functor of postcomposition by Ω∞

(Ω∞)∗ : FunT−rex
T (C,SpT ) LinT (C,Top

T
)

induces an equivalence from the ∞-category of T -functors C SpT which preserve finite T -colimits
to the ∞-category of T -linear functors C Top

T
, i.e. those T -functors which are fiberwise linear

and send finite T -coproducts to T -products.

We hope that the two aforementioned theorems will serve to impress upon the reader the utility of
the purely ∞-categorical work that we undertake in this thesis.

Warning. In contrast to this introduction thus far and the conventions adopted elsewhere (e.g. in
[13]), we will henceforth speak of S-categories, S-colimits, etc. for S = T op.

What is parametrized ∞-category theory? Roughly speaking, parametrized ∞-category theory
is an interpretation of the familiar notions of ordinary or ‘absolute’ ∞-category theory within the
(∞, 2)-category of functors Fun(S,Cat∞), done relative to a fixed ‘base’ ∞-category S. By ‘interpre-
tation’, we mean something along the lines of the program of Emily Riehl and Dominic Verity, which
axiomatizes the essential properties of an (∞, 2)-category that one needs to do formal category theory
into the notion of an ∞-cosmos, of which Fun(S,Cat∞) is an example. In an ∞-cosmos, one can
write down in a formal way notions of limits and colimits, adjunctions, Kan extensions, and so forth.
Working out what this means in the example of Cat∞-valued functors is the goal of this thesis. For
example, we will see that the Dotto–Moi theory of G-colimits ([5]) coincides with that of Oop

G -colimits
in the sense of parametrized ∞-category theory.

In contrast to Riehl–Verity, we will work within the model of quasi-categories and not hesitate
to use special aspects of our model (e.g. combinatorial arguments involving simplicial sets). We
are motivated in this respect by the existence of a highly developed theory of cocartesian fibrations
due to Jacob Lurie, which we review in §1. Cocartesian fibrations are our preferred way to model
Cat∞-valued functors, for two reasons:

(1) The data of a functor F : S Cat∞ is overdetermined vs. that of a cocartesian fibration
over S, in the sense that to define F one must prescribe an infinite hierarchy of coherence data,
which under the functor-fibration correspondence amounts to prescribing an infinite sequence
of compatible horn fillings.4 Because of this, specifying any given cocartesian fibration (which

3This is an additional technical hypothesis which we do not explain here. It will not concern us in the body of the

paper.
4It is for this reason that one speaks of straightening a cocartesian fibration to a functor.
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one ultimately needs to do in order to connect our theory to applications) is typically an easier
task than specifying the corresponding functor.

(2) The Grothendieck construction on a functor S Cat∞ is made visible in the cocartesian
fibration setup, as the total category of the cocartesian fibration. Many of our arguments
involve direct manipulation of the Grothendieck construction, in order to relate or reduce
notions of parametrized ∞-category theory to absolute ∞-category theory.

We have therefore tailored our exposition to the reader familiar with the first five chapters of [9]; the
only additional major prerequisite is the part of [11, App. B] dealing with variants of the cocartesian
model structure of [9, §3] and functoriality in the base. Let us now give a select summary of the
contents of this thesis. Because our work is of a foundational nature, most of our results concern
novel constructions that we introduce in parametrized ∞-category theory, which parallel simpler
constructions in absolute ∞-category theory. These include:

I Functor S-categories (§3) which model the internal hom in Fun(S,Cat∞) at the level of
cocartesian fibrations;

I Join and slice S-categories (§4), which permit us to define S-limits and S-colimits (§5);
I A bestiary of fibrations defined relative to S (§7);
I S-adjunctions (§8);
I S-colimits parametrized by a base S-category (§9), and subsequently S-Kan extensions (§10);
I S-categories of presheaves (§11).

Our main theorems concerning these new constructions are:

I A relation between S-slice categories and ordinary slice categories (Thm. 6.6), which permits
us to establish the S-cofinality theory (Thm. 6.7);

I Existence and uniqueness of S-Kan extensions (Thm. 10.3);
I The universal property of S-presheaves (Thm. 11.5), which specializes to Thm. 1.1;
I Bousfield–Kan style decomposition results for S-colimits (Thm. 12.6 and Thm. 12.13), which

imply in the case where Sop is orbital that, in a sense, S-(co)products are the only innovation
of our theory of S-(co)limits (Cor. 12.15).

Acknowledgements. This thesis forms a part of an ongoing joint project with my advisor Clark
Barwick, Emanuele Dotto, Saul Glasman, and Denis Nardin. I would like to thank them and the other
participants of the Bourbon seminar - Lukas Brantner, Peter Haines, Marc Hoyois, Akhil Mathew,
and Sune Precht Reeh - for innumerable conversations and mathematical inspiration, without which
this work would not have been possible.

2. Cocartesian fibrations and model categories of marked simplicial sets

In this section, we give a rapid review of the theory of cocartesian fibrations and the surrounding
apparatus of marked simplicial sets. This primarily serves to fix some of our notation and conventions
for the remainder of the paper; for a more detailed exposition of these concepts, we refer the reader
to [4]. In particular, the reader should be aware of our special notation (Ntn. 2.28) for the S-fibers
of a S-functor.

Cocartesian fibrations. We begin with the basic definitions:

2.1. Definition. Let π : X S be a map of simplicial sets. Then π is a cocartesian fibration if

(1) π is an inner fibration: for every n > 1, 0 < k < n and commutative square

Λnk X

∆n S,

π

the dotted lift exists.
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(2) For every edge α : s0 → s1 in S and x0 ∈ X with π(x0) = s0, there exists an edge e : x0 → x1

in X with π(e) = α, such that e is π-cocartesian: for every n > 1 and commutative square

Λn0 X

∆n S

f

π

with f |∆{0,1} = e, the dotted lift exists.

Dually, π is a cartesian fibration if πop is a cocartesian fibration.
A cocartesian resp. cartesian fibration π : X S is said to be a left resp. right fibration if for

every object s ∈ S the fiber Xs is a Kan complex.

2.2. Definition. Suppose π : X S and ρ : Y S are (co)cartesian fibrations. Then a map of
(co)cartesian fibrations f : X Y is a map of simplicial sets such that ρ ◦ f = π and f carries
π-(co)cartesian edges to ρ-(co)cartesian edges.

2.3. Definition. In the case where S is an ∞-category, we introduce alternative terminology for
cocartesian fibrations and left fibrations over S:

I An S-category resp. S-space C is a cocartesian resp. left fibration π : C S.
I An S-functor F : C D between S-categories C and D is a map of cocartesian fibrations

over S.

We now suppose that S is an ∞-category for the remainder of this section (and indeed, for this
paper).

2.4. Example (Arrow ∞-categories). The arrow ∞-category O(S) of S is cocartesian over S via the
target morphism ev1, and cartesian over S via the source morphism ev0. An edge

e : [s0 → t0] [s1 → t1]

in O(S) is ev1-cocartesian resp. ev0-cartesian if and only if ev0(e) resp. ev1(e) is an equivalence in S.
The fiber of ev0 : O(S) S over s is isomorphic to Lurie’s alternative slice category Ss/. Using our

knowledge of the ev1-cocartesian edges, we see that ev1 restricts to a left fibration Ss/ S. In the
terminology of [9, 4.4.4.5], this is a corepresentable left fibration. We will refer to the corepresentable
left fibrations as S-points. Further emphasizing this viewpoint, we will often let s denote Ss/.

To a beginner, the lifting conditions of Dfn. 2.1 can seem opaque. Under the assumption that S
is an ∞-category, we have a reformulation of the definition of cocartesian edge, and hence that of
cocartesian fibration, which serves to illuminate its homotopical meaning.

2.5. Proposition. Let π : X S be an inner fibration (so X is an ∞-category). Then an edge
e : x0 → x1 in X is π-cocartesian if and only if for every x2 ∈ X, the commutative square of mapping
spaces

MapX(x1, x2) MapX(x0, x2)

MapS(π(x1), π(x2)) MapS(π(x0), π(x2))

e∗

π π

π(e)∗

is homotopy cartesian.

With some work, Prp. 2.5 can be used to supply an alternative, model-independent definition of
a cocartesian fibration: we refer to Mazel-Gee’s paper [12] for an exposition along these lines. In
any case, the collection of cocartesian fibrations over S and maps thereof organize into a subcategory
Catcocart

∞/S of the overcategory Cat∞/S .

2.6. Example. Let Cat∞ denote the (large) ∞-category of (small) ∞-categories. Then there exists
a universal cocartesian fibration U Cat∞, which is characterized up to contractible choice by the
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requirement that any cocartesian fibration π : X S (with S a (small) simplicial set) fits into a
homotopy pullback square

X U

S Cat∞.

π

Fπ

Concretely, one can take U to be the subcategory of the arrow category O(Cat∞) spanned by the
representable right fibrations and morphisms thereof.

As suggested by Exm. 2.6, the functor

Fun(S,Cat∞) Catcocart
∞/S

given by pulling back along U Cat∞ is an equivalence. The composition

Gr : Fun(S,Cat∞)
'−→ Catcocart

∞/S ⊂ Cat∞/S

is the Grothendieck construction functor. Since equivalences in Fun(S,Cat∞) are detected objectwise,
Gr is conservative. Moreover, one can check that Gr preserves limit and colimits, so by the adjoint
functor theorem Gr admits both a left and a right adjoint

Fr a Gr a H.
We call Fr the free cocartesian fibration functor: concretely, Fr(X S) = X ×S O(S)

ev1−−→ S, or as
a functor s 7→ X×S S/s with functoriality obtained from S/(−). The functor H can also be concretely
described using its universal mapping property: since Fr({s} ⊂ S) = Ss/, the fiber H(X)s is given by
Fun/S(Ss/, X), and the functoriality in S is obtained from that of S(−)/.

A model structure for cocartesian fibrations. We want a model structure which has as its
fibrant objects the cocartesian fibrations over a fixed simplicial set. However, it is clear that to define
it we need some way to remember the data of the cocartesian edges. This leads us to introduce marked
simplicial sets.

2.7. Definition. A marked simplicial set (X, E) is the data of a simplicial set X and a subset E ⊂ X1

of the edges of X, such that E contains all of the degenerate edges. We call E the set of marked edges
of X. A map of marked simplicial sets f : (X, E) (Y,F) is a map of simplicial sets f : X Y
such that f(E) ⊂ F .

2.8. Notation. We introduce notation for certain classes of marked simplicial sets. Let X be a
simplicial set.

I X[ is X with only the degenerate edges marked.
I X] is X with all of its edges marked.
I Suppose that X is an ∞-category. Then X∼ is X with its equivalences marked.
I Suppose that π : X S is an inner fibration. Then \X is X with its π-cocartesian edges

marked, and X\ is X with its π-cartesian edges marked.
I Let n > 0. Let \∆

n resp. \Λ
n
0 denote ∆n resp. Λn0 with the edge {0, 1} marked (if it exists)

along with the degenerate edges. Dually, let ∆n\ resp. Λnn
\ denote ∆n resp. Λnn with the edge

{n− 1, n} marked.

Beware also that we will frequently not indicate the marking in the notation for a marked simplicial
set, leaving it either implicit or to be deduced from context.

For the rest of this section, fix a marked simplicial set (Z, E) where Z is an ∞-category and E
contains all of the equivalences in Z; in our applications, Z will generally be some type of fibration
over S. Let sSet+

/(Z,E) be the category of marked simplicial sets over (Z, E). Also denote sSet+
/Z]

by

sSet+
/Z . We will frequently abuse notation by referring to objects π : (X,F) (Z, E) of sSet+

/(Z,E)

by their domain (X,F) or X.

2.9. Definition. An object (X,F) in sSet+
/(Z,E) is (Z, E)-fibered5 if

5This differs from the definition in [11, B.0.19].
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(1) π : X Z is an inner fibration.
(2) For every n > 0 and commutative square

\Λ
n
0 (X,F)

\∆
n (Z, E),

a dotted lift exists. In other words, letting n > 1, marked edges in X are π-cocartesian, and
letting n = 1, π-cocartesian lifts exist over marked edges in Z. (Note that condition 2 already
guarantees that X Z is a cocartesian fibration if E = Z1; however, it may happen that
not all of the π-cocartesian edges were marked in X.)

(3) For every commutative square

(Λ2
1)] ∪(Λ2

1)[ (∆2)[ (X,F)

(∆2)] (Z, E),

a dotted lift exists. In other words, marked edges are closed under composition.
(4) Let Q = ∆0

∐
∆{0,2} ∆3

∐
∆{1,3} ∆0. For every commutative square

Q[ (X,F)

Q] (Z, E),

a dotted lift exists. We remark that this lifting property implies that marked edges in X are
stable under equivalences in the fiber of the target.

2.10. Example. Let π : X Z be an inner fibration. Comparing with Dfn. 2.1, it is clear that
(X,F) is Z]-fibered if and only if π is a cocartesian fibration and (X,F) = \X. At the other extreme,
(X,F) is Z∼-fibered if and only if π is a categorical fibration and (X,F) = X∼.

Recall that a model structure, if it exists, is determined by its cofibrations and fibrant objects. We
will define a model structure on sSet+

/(Z,E) with cofibrations the monomorphisms and fibrant objects

given by the (Z, E)-fibered objects.

2.11. Definition. Define functors

MapZ(−,−) :sSet+
/(Z,E)

op × sSet+
/(Z,E) sSet

FunZ(−,−) :sSet+
/(Z,E)

op × sSet+
/(Z,E) sSet

by Hom(A,MapZ(X,Y )) = Hom/(Z,E)(A
] × X,Y ) and Hom(A,FunZ(X,Y )) = Hom/(Z,E)(A

[ ×
X,Y ).6

2.12. Definition. A map f : A B in sSet+
/(Z,E) is a cocartesian equivalence (with respect to

(Z, E)) if the following equivalent conditions obtain:

(1) For all (Z, E)-fibered X, f∗ : MapZ(B,X) MapZ(A,X) is an equivalence of Kan com-
plexes.

(2) For all (Z, E)-fibered X, f∗ : FunZ(B,X) FunZ(A,X) is an equivalence of ∞-categories.

2.13. Theorem. There exists a left proper combinatorial model structure on the category sSet+
/(Z,E),

which we call the cocartesian model structure, such that:

(1) The cofibrations are the monomorphisms.
(2) The weak equivalences are the cocartesian equivalences.

6In [11, App. B], these functors are denoted as Map]
Z and Map[

Z respectively.
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(3) The fibrant objects are the (Z, E)-fibered objects.

Dually, we define the cartesian model structure on sSet+
/(Z,E) to be the cocartesian model structure

on sSet+
/(Z,E)op under the isomorphism given by taking opposites.

We have the following characterization of the cocartesian equivalences between fibrant objects
(which is unsurprising, in light of the equivalence Catcocart

∞/Z ' Fun(Z,Cat∞)).

2.14. Proposition. Let X and Y be fibrant objects in sSet+
/(Z,E) equipped with the cocartesian model

structure, and let f : X Y be a map in sSet+
/(Z,E). Then the following are equivalent:

(1) f is a cocartesian equivalence.
(2) f is a homotopy equivalence, i.e. f admits a homotopy inverse: there exists a map g : Y X

and homotopies h : (∆1)] ×X X, h′ : (∆1)] × Y Y in sSet+
/(Z,E) connecting g ◦ f to

idX and f ◦ g to idY , respectively.
(3) f is a categorical equivalence.
(4) For every (not necessarily marked) edge α : ∆1 Z, fα : ∆1 ×Z X ∆1 ×Z Y is a

categorical equivalence.

If every edge of Z is marked, then (4) can be replaced by the following apparently weaker condition:

(4’) For every object z ∈ Z, fz : Xz Yz is a categorical equivalence.

We also have the following characterization of the fibrations between fibrant objects.

2.15. Proposition. Let Y = (Y,F) be a fibrant object in sSet+
/(Z,E) equipped with the cocartesian

model structure, and let f : X Y be a map in sSet+
/(Z,E). Then the following are equivalent:

(1) f is a fibration.
(2) X is fibrant, and f is a categorical fibration.
(3) f is fibrant in sSet+

/(Y,F).

2.16. Corollary. Suppose Z S is a cocartesian fibration. Then the cocartesian model structure
sSet+

/\Z
coincides with the ‘slice’ model structure on (sSet+

/S)/\Z created by the forgetful functor to

sSet+
/S equipped with its cocartesian model structure.

2.17. Example. Suppose that Z is a Kan complex. Then the cocartesian and cartesian model struc-
tures on sSet+

/Z coincide. In particular, taking Z = ∆0, we will also refer to the cocartesian model

structure on sSet+ as the marked model structure. Since this model structure on sSet+ is unambigu-
ous, we will always regard sSet+ as equipped with it. Then the fibrant objects of sSet+ are precisely
the ∞-categories with their equivalences marked.

2.18. Example. Suppose that (Z, E) = Z∼. Then the cocartesian and cartesian model structures on
sSet+

/Z∼ coincide. Moreover, we have a Quillen equivalence

(−)[ : (sSetJoyal)/Z sSet+
/Z∼ :U

where the functor U forgets the marking.

2.19. Example. The inclusion functor Top ⊂ Cat∞ admits left and right adjoints B and ι, where B
is the classifying space functor that inverts all edges and ι is the ‘core’ functor that takes the maximal
sub-∞-groupoid. These two adjunctions are modeled by the two Quillen adjunctions

U : sSet+ sSetQuillen :(−)],

(−)] : sSetQuillen sSet+ :M.

Here M(X,E ) is the maximal sub-simplicial set of X such that all of its edges are marked.

In particular, we have that (−)[ and (−)] send categorical equivalences resp. weak homotopy
equivalences to marked equivalences.
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2.20. Proposition. The bifunctor

−×− : sSet+
/(Z1,E1) × sSet+

/(Z2,E2) sSet+
/(Z1×Z2,E1×E2).

is left Quillen. Consequently, the bifunctors

MapZ(−,−) :sSet+
/(Z,E)

op × sSet+
/(Z,E) sSetQuillen

FunZ(−,−) :sSet+
/(Z,E)

op × sSet+
/(Z,E) sSetJoyal

are right Quillen, so sSet+
/(Z,E) is both a simplicial i.e. sSetQuillen-enriched model category (with

respect to MapZ) and sSetJoyal-enriched model category (with respect to FunZ).

2.21. Remark. By Prp. 2.20, sSet+
/(Z,E) is an example of an ∞-cosmos in the sense of Riehl-Verity.

Finally, we explain how the formalism of marked simplicial sets can be used to extract the push-
forward functors implicitly defined by a cocartesian fibration. First, we need a lemma.

2.22. Lemma. For n > 0, the inclusion in : ∆n−1 ∼= ∆{0} ?∆{2,...,n} \∆
n is left marked anodyne.

Consequently, for a cocartesian fibration C S, the map

Fun(\∆
n, \C) Fun(∆n−1, C)×Fun(∆n−1,C) Fun(∆n, S)

induced by in is a trivial Kan fibration.

Proof. We proceed by induction on n, the base case n = 1 being the left marked anodyne map
∆{0} (∆1)]. Consider the commutative diagram

∆{0} ? ∂∆n−2 ∆{0} ?∆{2,...,n}

(∆{0} ? Λn−1
0 ,E ) \Λ

n
0

\∆
n

⋃
in−1

in

where E is the collection of edges {0, i}, 0 < i ≤ n (and the degenerate edges). The square is a
pushout, and by the inductive hypothesis, the lefthand vertical map is left marked anodyne. We
deduce that in is left marked anodyne. The second statement now follows because the lifting problem

A Fun(\∆
n, \C)

B Fun(∆n−1, C)×Fun(∆n−1,C) Fun(∆n, S)

transposes to

A× \∆
n

⋃
A×∆n−1

B ×∆n−1
\C

B × \∆
n S

and the lefthand vertical map is left marked anodyne for any cofibration A B by [9, 3.1.2.3]. �

The main case of interest in Lm. 2.22 is when n = 1, which shows that Ococart(C) C ×S O(S)
is a trivial Kan fibration. Let P : C ×S O(S) Ococart(C) be a section that fixes the inclusion
C ⊂ Ococart(C). Then we say that P or the further composite P ′ = ev1 ◦P is a cocartesian pushforward
for C S. Given an edge α of S, P ′α : Cs Ct is the pushforward functor α! determined under
the equivalence Catcocart

∞/S ' Fun(S,Cat∞).
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Functoriality in the model structure. Let π : X Z be a map of simplicial sets. Then the
pullback functor π∗ : sSet/Y sSet/X admits a left adjoint π!, given by postcomposing with π.
In addition, since sSet is a topos, π∗ also admits a right adjoint π∗, which may be thought of as the
functor of relative sections because Hom/X(A, f∗(B)) ∼= Hom/Y (A×X Y,B).

Now supposing that π is a map of marked simplicial sets, π∗, π!, and π∗ extend to functors of
marked simplicial sets over X or Z in an evident manner. We then seek conditions under which the
adjunctions π! a π∗ and π∗ a π∗ are Quillen with respect to the cocartesian model structures. To this
end, we have the following theorem of Lurie:

2.23. Theorem. Let
(Z, E)

π←− (X,F)
ρ−→ (X ′,F ′)

be a span of marked simplicial sets such that Z,X,X ′ are∞-categories and the collections of markings
contain all the equivalences. Then the adjunction

ρ! : sSet+
/(X,F) sSet+

/(X′,F ′) :ρ∗

is Quillen with respect to the cocartesian model structures. Moreover, suppose that

(1) For every object x ∈ X and marked edge f : z → π(x) in Z, there exists a locally π-cartesian
edge x0 → x in X lifting f .

(2) π is a flat categorical fibration.
(3) E and F are closed under composition.
(4) Suppose given a commutative diagram

x1

x0 x2

gf

h

in X where g is locally π-cartesian, π(g) is marked, and π(f) is an equivalence. Then f
is marked if and only if h is marked. (Note in particular that, taking f to be an identity
morphism, every locally π-cartesian edge lying over a marked edge is itself marked.)

Then the adjunction
π∗ : sSet+

/(X,F) sSet+
/(Z,E) :π∗

is Quillen with respect to the cocartesian model structures.

We formulated Thm. 2.23 as a theorem concerning a span X
φ←− Z

ρ−→ X ′ because in applications
we will typically be interested in the composite Quillen adjunction

ρ!π
∗ : sSet+

/(X,F) sSet+
/(X′,F ′) :π∗ρ

∗.

Here are two examples.

2.24. Example (Pairing cartesian and cocartesian fibrations). Let π : X Z be a cartesian fibration.
Then the span

Z]
π←− X\ π−→ Z]

satisfies the hypotheses of Thm. 2.23. Now given a cocartesian fibration Y Z, define

F̃unZ(X,Y ) = (π∗π
∗)(\Y → Z]).

Then the fiber of F̃unZ(X,Y ) over an object z ∈ Z is Fun(Xz, Yz), and given a morphism α : z0 z1,
the pushforward functor α! : Fun(Xz0 , Yz0) Fun(Xz1 , Yz1) is given by precomposition in the source
and postcomposition in the target.

2.25. Example (Right Kan extension). Let f : Y Z be a functor. We can apply Thm. 2.23 to
perform the operation of right Kan extension at the level of cocartesian fibrations. Consider the span

Z]
ev0←−− (O(Z)×Z,f Y )]

prY−−→ Y ].

Then the conditions of Thm. 2.23 are satisfied, so we obtain a Quillen adjunction

(prY )!(ev0)∗ : sSet+
/Z sSet+

/Y :(ev0)∗(prY )∗.
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In addition, the map C ×Z Y ] C ×Z O(Z)] ×Z Y ] induced by the identity section ι : Z O(Z)
is a cocartesian equivalence in sSet+

/Y for C Z fibrant in sSet+
/Z , by [2, 9.8]. Consequently, the

induced adjunction of ∞-categories

(prY )!(ev0)∗ : Catcocart
∞/Z Catcocart

∞/Y :(ev0)∗(prY )∗

is equivalent to
f∗ : Fun(Z,Cat∞) Fun(Y,Cat∞) :f∗

under the straightening/unstraightening equivalence (which is natural with respect to pullback).
Note that as a special case, if Z = ∆0 we recover the formula FunY (Y ], \C) ' lim FC of [9, 3.3.3.2]

(where C Y is a cocartesian fibration and FC : Y Cat∞ the corresponding functor). Indeed,
this construction of the right Kan extension of a cocartesian fibration is suggested by that result and
the pointwise formula for a right Kan extension.

Finally, we will use the following two observations concerning the interaction of Thm. 2.23 with
compositions and homotopy equivalences of spans (which we also recorded in [4]).

2.26. Lemma. Suppose we have spans of marked simplicial sets

X0
π0−→ Z0

ρ0−→ X1

and
X1

π1−→ Z1
ρ1−→ X2

which each satisfy the hypotheses of Thm. 2.23. Then the span

Z0
pr0−−→ Z0 ×X1

Z1
pr1−−→ Z1

also satisfies the hypothesis of Thm. 2.23. Consequently, we obtain a Quillen adjunction

(ρ1 ◦ pr1)!(π0 ◦ pr0)∗ : sSet+
/X0

sSet+
X2

:(π0 ◦ pr0)∗(ρ1 ◦ pr1)∗,

which is the composite of the Quillen adjunction from sSet+
/X0

to sSet+
/X1

with the one from sSet+
/X1

to sSet+
/X2

.

Proof. The proof is by inspection. However, one should beware that the “long” span

X0 Z0 ×X1 Z1 X2

may fail to satisfy the hypotheses of Thm. 2.23, because the composition of locally cartesian fibrations
may fail to again be locally cartesian; this explains the roundabout formulation of the statement.
Finally, observe that if we employ the base-change isomorphism ρ∗0π1,∗ ∼= pr0,∗ ◦ pr∗1, then we obtain
our Quillen adjunction as the composite of the two given Quillen adjunctions. �

2.27. Lemma. Suppose a morphism of spans of marked simplicial sets

Z

X Z ′ X ′

π ρ
f

π′ ρ′

where ρ!π
∗ and (ρ′)!(π

′)∗ are left Quillen with respect to the cocartesian model structures on X and
X ′. Suppose moreover that f is a homotopy equivalence in sSet+

/X′ , so that there exists a homotopy

inverse g and homotopies
h : id ' g ◦ f and k : id ' f ◦ g.

Then the natural transformation ρ!π
∗ (ρ′)!(π

′)∗ induced by f is a cocartesian equivalence on all
objects, and, consequently, the adjoint natural transformation (π′)∗(ρ

′)∗ π∗ρ
∗ is a cocartesian

equivalence on all fibrant objects.

Proof. The homotopies h and k pull back to show that for all X C, the map

idX ×C f : X ×C K X ×C L
is a homotopy equivalence with inverse idX×C g. The last statement now follows from [7, 1.4.4(b)]. �
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Parametrized fibers. In this brief subsection, we record notation for the S-fibers of an S-functor.

2.28. Notation. Given an S-category π : D S and an object x ∈ D, define

Ox→(D) = {x} ×D O(D).

For the full subcategory of cocartesian edges Ococart(D) ⊂ O(D), also define

x = Ococart
x→ (D).

Given an S-functor φ : C D, define

Cx = x×D,φ C.

By Lm. 12.10, x Sπx/ is a trivial fibration. We will therefore also regard Cx as a Sπx/-category

(and we will sometimes be cavalier about the distinction between x and Sπx/). Note however, that the
functor x D is canonical in our setup, whereas we need to make a choice of cocartesian pushforward
to choose a S-functor Sπx/ D that selects x ∈ D.

3. Functor categories

Let S be an ∞-category. Then Fun(S,Cat∞) is cartesian closed, so it possesses an internal hom.
As a basic application of the existence of f∗ under suitable hypotheses, we will define this internal
hom at the level of cocartesian fibrations over S.

3.1. Proposition. Let C S be a cocartesian fibration. Let ev0, ev1 : O(S)×S C S denote the
source and target maps. Then the functor

(ev1)!(ev0)∗ : sSet+
/S sSet+

/O(S)]×S\C sSet+
/S

is left Quillen with respect to the cocartesian model structures.

Proof. We verify the hypotheses of Thm. 2.23 as applied to the span S]
ev0←−− O(S)]×S \C

ev1−−→ S]. By
[9, 2.4.7.12], ev0 is a cartesian fibration and an edge e in O(S)×S C is ev0-cartesian if and only if its
projection to C is an equivalence. (1) thus holds. (2) holds since cartesian fibrations are flat categorical
fibrations. (3) is obvious. (4) follows from the stability of cocartesian edges under equivalence. �

We will denote the right adjoint (ev0)∗(ev1)∗ by FunS(C,−) or FunS(\C,−). Prp. 3.1 implies that
if D S is a cocartesian fibration, FunS(C,D) S is a cocartesian fibration. Unwinding the
definitions, we see that an object of FunS(C,D) over s ∈ S is a Ss/-functor Ss/ ×S C Ss/ ×S D,
and a cocartesian edge of FunS(C,D) over an edge e : ∆1 S is a ∆1 ×S O(S)-functor ∆1 ×S
O(S)×S C ∆1 ×S O(S)×S D.

3.2. Lemma. Let ι : S O(S) be the identity section and regard O(S)] as a marked simplicial set
over S via the target map. Then

(1) For every marked simplicial set X S and cartesian fibration C S,

idX × ι× idC : X ×S C\ X ×S O(S)] ×S C\

is a cocartesian equivalence in sSet+
/S.

(1’) For every marked simplicial set X S and cartesian fibration C S,

ι× idC : X ×S C\ Fun((∆1)], X)×S C\

is a cocartesian equivalence in sSet+
/S, where the marked edges in Fun((∆1)], X) are the

marked squares in X.
(2) For every marked simplicial set X S and cocartesian fibration C S,

idC × ι× idX : \C ×S X \C ×S O(S)] ×S X

is a homotopy equivalence in sSet+
/S.
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Proof. (1): Because −×S C\ preserves cocartesian equivalences, we reduce to the case where C = S.
By definition, X X ×S O(S)] is a cocartesian equivalence if and only if for every cocartesian

fibration Z S, Map]S(X×S O(S)], \Z) Map]S(X, \Z) is a trivial Kan fibration. In other words,
for every monomorphism of simplicial sets A B and cocartesian fibration Z S, we need to
provide a lift in the following commutative square

B] ×X
⊔
A]×X(A] ×X)×S O(S)] \Z

(B] ×X)×S O(S)] S]

φ

Define h0 : O(S)] × (∆1)] O(S)] to be the adjoint to the map O(S)] O(O(S))] obtained
by precomposing by the map of posets ∆1 ×∆1 ∆1 which sends (1, 1) to 1 and the other vertices
to 0. Precomposing φ by idA]×X × h0, define a homotopy

h : (A] ×X)×S O(S)] × (∆1)] \Z

from φ|A]×X ◦ prA]×X to φ|(A]×X)×SO(S)] . Using h and φ|B]×X , define a map

ψ : B] ×X
⊔

A]×X

(A] ×X)×S O(S)] Fun((∆1)], \Z)

such that ψ|B]×X is adjoint to φ|B]×X ◦ prB]×X and ψ|(A]×X)×SO(S)] is adjoint to h. Then we

may factor the above square through the trivial fibration Fun((∆1)], \Z) \Z ×S O(S)] to obtain
the commutative rectangle

B] ×X
⊔
A]×X(A] ×X)×S O(S)] Fun((∆1)], \Z) \Z

(B] ×X)×S O(S)] \Z ×S O(S)] S].

ψ e1

'ψ̃

φ|
B]×X×id

e1

The dotted lift ψ̃ exists, and e1 ◦ ψ̃ is our desired lift.
(1’): Repeat the argument of (1) with Fun((∆1)], X) in place of O(S)].
(2): Let p : C S denote the structure map and let P be a lift in the commutative square

\C Fun((∆1)], \C)

\C ×S O(S)] \C ×S O(S)].

ιC

(e0,O(p))'

=

P

Let

g = (e1 × idX) ◦ (P × idX) : \C ×S O(S)] ×S X \C ×S X.
and note that g is map over S. We claim that g is a marked homotopy inverse of f = idC×ι×idX . By

construction, g◦f = id. For the other direction, define h0 : Fun((∆1)], \C)×(∆1)] Fun((∆1)], \C)
as the adjoint of the map Fun((∆1)], \C) Fun((∆1 ×∆1)], \C) obtained by precomposing by the
map of posets ∆1 ×∆1 ∆1 which sends (0, 0) to 0 and the other vertices to 1. Define

h : \C ×S O(S)] ×S X × (∆1)] \C ×S O(S)] ×S X

as the composite ((e0,O(p))×X) ◦ (h0×X) ◦ (P × idX×(∆1)]). Then h is a homotopy over S from
id to f ◦ g. �

3.3. Proposition. Let C,C ′, D S be cocartesian fibrations and let F : C C ′ be a monomor-
phism. For all marked simplicial sets Y over S, the map

FunS(\D,FunS(\C
′, Y )) FunS(\D ×S \C

′, Y )×FunS(\D×S\C,Y ) FunS(\D,FunS(\C, Y ))

which precomposes by F is a trivial Kan fibration.
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Proof. From the defining adjunction, for all X,Y ∈ sSet+
/S we have a natural isomorphism

FunS(X,FunS(\C, Y )) ∼= FunS(X ×S O(S)] ×S \C, Y )

of simplicial sets. Since FunS(−,−) is a right Quillen bifunctor, the assertion reduces to showing
that

\D ×S \C
′
⊔

\D×S\C
\D ×S O(S)] ×S \C \D ×S O(S)] ×S \C

′

is a trivial cofibration in sSet+
/S , which follows from 3.2 (2). �

In Prp. 3.3, letting C = ∅ and Y = \E for another cocartesian fibration E S, we deduce that
FunS(C,−) is right adjoint to C ×S − as a endofunctor of Fun(S,Cat∞). Further setting D = S, we
deduce that the category of cocartesian sections of FunS(\C, \E) is equivalent to FunS(\C, \E).

3.4. Notation. Given a map f : \C \E, let σf denote the cocartesian section S] FunS(\C, \E)

given by adjointing the map O(S)] ×S \C
prC−−→ \C

f−→ \E.

3.5. Lemma. Let C D be a fibration of marked simplicial sets over S.

(1) Let K S be a cocartesian fibration. Then

FunS(\K,C) FunS(\K,D)×D C

is a fibration in sSet+
/S.

(2) The map
FunS(S], C) FunS(S], D)×D C

is a trivial fibration in sSet+
/S.

Proof. Let i : A B be a map of marked simplicial sets. For (1), we use that if i is a trivial
cofibration, then

B
⊔
A

A×S O(S)] ×S \K B ×S O(S)×S \K

is a trivial cofibration, which follows from Prp. 3.1. For (2), we use that if i is a cofibration, then

B
⊔
A

A×S O(S)] B ×S O(S)

is a trivial cofibration, which follows from Lm. 3.2 (1). �

3.6. Proposition. The Quillen adjunction

−×S O(S)] : sSet+
/S sSet+

/S :FunS(S],−)

is a Quillen equivalence.

Proof. We first check that for every cocartesian fibration C S, the counit map

FunS(S], \C)×S O(S)] \C

is a cocartesian equivalence. By Lm. 3.2(1), it suffices to show that

FunS(S], \C) \C

is a trivial marked fibration, which follows from Lm. 3.5(2) (taking D = S). We now complete
the proof by checking that −×S O(S)] reflects cocartesian equivalences: i.e., given the commutative
square

A B

A×S O(S)] B ×S O(S)].

if the lower horizontal map is a cocartesian equivalence over S (with respect to the target map) then
the upper horizontal map is a cocartesian equivalence over S. But the vertical maps are cocartesian
equivalences by Lm. 3.2(1). �
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The construction FunS(−,−) does not make homotopical sense when the first variable is not fibrant,
so it does not yield a Quillen bifunctor. Nevertheless, we can say the following about varying the first
variable.

3.7. Proposition. Let K, L, and C be fibrant marked simplicial sets over S, let f : K L be a
map and let

f∗ : FunS(L,C) FunS(K,C)

denote the induced map.

(1) Suppose that K L is a cocartesian equivalence over S. Then f∗ is a cocartesian equivalence
over S.

(2) Suppose that K L is a cofibration. Then f∗ is a fibration in sSet+
/S.

Proof. (1): It suffices to check that for all s ∈ S, f∗ induces a categorical equivalence between the
fibers over s, i.e. that

FunS((Ss/)] ×S L,C) FunS((Ss/)] ×S K,C)

is a categorical equivalence. Our assumption implies that (Ss/)]×SK (Ss/)]×SL is a cocartesian
equivalence over S, so this holds.

(2): For any trivial cofibration A B in sSet+
S , we need to check that

A×S O(S)×S L
⊔

A×SO(S)×SK

B ×S O(S)×S K B ×S O(S)×S L

is a trivial cofibration in sSet+
/S . By Prp. 3.1, −×S O(S)×S K preserves trivial cofibrations and

ditto for L. The result then follows. �

A final word on notation: since FunS(−,−) is only well-defined and fibrant when both variables
are fibrant, we will henceforth cease to denote the markings on the variables.

S-categories of S-objects. For the convenience of the reader, we briefly review the construction
and basic properties of the S-category of S-objects in an ∞-category C. This material is originally
due to D. Nardin in [2, §7].

3.8. Construction. The span

S] O(S)
\

∆0ev0

defines a right Quillen functor sSet+ sSet+
/S , which sends an∞-category E to F̃unS(O(S), E×S).

This is the S-category of objects in E, which we will denote by ES .

The next proposition shows that the functor E 7→ ES implements the right adjoint to Catcocart
∞/S Cat∞

at the level of cocartesian fibrations.

3.9. Proposition. Suppose C a S-category and E an ∞-category. Then we have an equivalence

ψ : FunS(C,ES)
'−→ Fun(C,E)

Proof. Consider the commutative diagram

C∼ O(S)
\

∆0

\C S]

∆0

Given an∞-category E, travelling along the outer span yields Fun(C,E), travelling along the two inner

spans yields FunS(C,ES), and the comparison functor ψ is induced by the map ι : C∼ \C×SO(S)
\
.

By [2, 6.2], ι is a homotopy equivalence in sSet+
/S . Therefore, combining Lm. 2.26 and Lm. 2.27, we

deduce the claim. �
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3.10. Example. Let E = Top or Cat∞. Then Top
S

resp. Cat∞,S is the S-category of S-spaces

resp. S-categories. In particular, suppose E = Top and S = Oop
G . Then we also call Top

Oop
G

the

G-∞-category of G-spaces. Note that the fiber of this cocartesian fibration over a transitive G-set
G/H is equivalent to the ∞-category of H-spaces Fun(Oop

H ,Top), and the pushforward functors are
given by restriction along a subgroup and conjugation.

4. Join and slice

The join and slice constructions are at the heart of the ∞-categorical approach to limits and col-
imits. In this section, we introduce relative join and slice constructions and explore their homotopical
properties.

The S-join.

4.1. Definition. Let ι : S × ∂∆1 S ×∆1 be the inclusion. Define the S-join to be the functor

(− ?S −) = ι∗ : sSet/S×∂∆1 sSet/S×∆1 .

Define the marked S-join to be the functor

(− ?S −) = ι∗ : sSet+
/S]×(∂∆1)[

sSet+
/S]×(∆1)[

.

4.2. Notation. Given X,Y marked simplicial sets over S, we will usually refer to the structure maps
to S by π1 : X S, π2 : Y S, and π : X ?S Y S. Explicitly, a (i+ j+ 1)-simplex λ of X ?S Y
is the data of simplices σ : ∆i X, τ : ∆j Y , and π ◦ λ : ∆i ?∆j S such that the diagram

∆i ∆i ?∆j ∆j

X S Y

σ πλ τ

π1 π2

commutes. We will sometimes write λ = (σ, τ) so as to remember the data of the i-simplex of X and
the j-simplex of Y in the notation. If given an n-simplex of X?S Y , we will indicate the decomposition
of ∆n given by the structure map to ∆1 as ∆n0 ?∆n1 (with either side possibly empty).

4.3. Proposition. Let ι : S × ∂∆1 S ×∆1 be the inclusion. Then

(a) ι∗ : sSet/S×∂∆1 sSet/S×∆1 is a right Quillen functor.

(b) ι∗ : sSet+
/S]×(∂∆1)[

sSet+
/S]×(∆1)[

is a right Quillen functor.

Consequently, if X and Y are categorical resp. cocartesian fibrations over S, then X ?S Y is a
categorical resp. cocartesian fibration over S, with the cocartesian edges given by those in X and Y .

Proof. For (b), we verify the hypotheses of Thm. 2.23. All of the requirements are immediate except
for (1) and (2).

(1): Let (s, i) be a vertex of S] × (∂∆1)[, i = 0 or 1. Let f : (s′, i′) (s, i) be a marked edge in
S] × (∆1)[. Then i′ = i and f viewed as an edge in S] × (∂∆1)[ is locally ι-cartesian.

(2): It is obvious that ∂∆1 ∆1 is a flat categorical fibration, so by stability of flat categorical
fibrations under base change, S × ∂∆1 S ×∆1 is a flat categorical fibration.

(a) also follows from (2) by [11, B.4.5]. By (a), if X and Y are categorical fibrations over S, X ?S Y
is a categorical fibration over S × ∆1. The projection map S × ∆1 S is a categorical fibration,
so X ?S Y is also a categorical fibration over S. By (b), if X and Y are cocartesian fibrations over
S, \X ?S \Y is fibrant in sSet+

/S]×(∆1)[
. Since S] × (∆1)[ is marked as a cocartesian fibration over S,

\X ?S \Y is marked as a cocartesian fibration over S. �

We have the compatibility of the relative join with base change.

4.4. Lemma. Let f : T S be a functor and let X and Y be (marked) simplicial sets over S. Then
we have a canonical isomorphism

(X ?S Y )×S T ∼= (X ×S T ) ?T (Y ×S T ).
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Proof. From the pullback square

T × ∂∆1 T ×∆1

S × ∂∆1 S ×∆1

ιT

f×id f×id

ιS

we obtain the base-change isomorphism f∗(ιS)∗ ∼= (ιT )∗f
∗. �

In [9, §4.2.2], Lurie introduces the relative ‘diamond’ join operation �S , which we now recall. Given
X and Y marked simplicial sets over S, define

X �S Y = X tX×SY×{0} X ×S Y × (∆1)[ tX×SY×{1} Y.
There is a comparison map ψ(X,Y ) : X �S Y X ?S Y = ι∗(X,Y ), adjoint to the isomorphism

ι∗(X ?S Y ) ∼= (X,Y ).

4.5. Lemma. ψ(X,S) : X �S S] X ?S S
] is a cocartesian equivalence in sSet+

/S. Dually, if X is

fibrant, then ψ(S,X) is a cocartesian equivalence in sSet+
/S.

Proof. We first address the map ψ(X,S). By left properness of the cocartesian model structure, the
defining pushout for X �S S is a homotopy pushout. By Thm. 4.16, − ?S S preserves cocartesian
equivalences. Therefore, choosing a fibrant replacement for X and using naturality of the comparison
map ψ(X,S), we may reduce to the case that X is fibrant. Then we have to check that

X × {1} X × (∆1)[

S] X ?S S
]

is a homotopy pushout square. Since this is a square of fibrant objects, this assertion can be checked

fiberwise, in which case it reduces to the equivalence Xs �∆0 '−→ X� of [9, 4.2.1.2].
The second statement concerning ψ(S,X) follows by the same type of argument. �

4.6. Warning. In general, ψ(X,Y ) is not a cocartesian equivalence. As a counterexample, consider

S = ∆1, X = {0}, and Y = {1}. Then ψ(X,Y ) is the inclusion of X �S Y ∼= ∆{0} t ∆{1} into

X ?S Y ∼= ∆1, which is not a cocartesian equivalence over ∆1.

We will later need the following strengthening of the conclusion of Prp. 4.3.

4.7. Proposition. (1) Let C,C ′, D S be inner fibrations and let C,C ′ D be functors.
Then C ?D C ′ S is an inner fibration.

(2) Let C,C ′, D S be S-categories and let C,C ′ D be S-functors. Then C ?D C ′ S
is a S-category with cocartesian edges given by those in C or C ′, and C ?D C ′ D is a
S-functor.

Proof. (1) Let 0 < k < n. We need to solve the lifting problem

Λnk C ?D C ′

∆n S.

λ0

λ

If λ0 lands entirely in C or C ′, then we are done by assumption, so suppose not. Let λ :
∆n D be a lift in the commutative square

Λnk D

∆n S.

λ
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Define λ using the data (λ0|∆n0 , λ0|∆n1 , λ). Then λ is a valid lift.
(2) Consider C ?D C ′ as a marked simplicial set with marked edges those in \C or in \C

′. We
need to solve the lifting problem

\Λ
n
0 C ?D C ′

\∆
n S.

λ0

λ

Again, if λ0 lands entirely in C or C ′, then we are done by assumption, so suppose not (so
that n ≥ 2 and the marked edge lies in C). Let λ : ∆n D be a lift in the commutative
square

\Λ
n
0 \D

\∆
n S.

λ

Define λ using the data (λ0|∆n0 , λ0|∆n1 , λ). Then λ is a valid lift. Finally, note that we may
obviously lift against classes (3) and (4) of [9, 3.1.1.1]. We conclude that C ?D C ′ S is
fibrant in sSet+

/S , hence an S-category with cocartesian edges as marked.

�

Since the S-join is defined as a right Kan extension, it is simple to map into. In the other direction,
we can offer the following lemma.

4.8. Lemma. Let C, C ′, D, and E be S-categories and let C,C ′ D be S-functors. Then

FunS(C ?D C ′, E) FunS(C,E)× FunS(C ′, E)

is a bifibration (Dfn. [9, 2.4.7.2]). Consequently,

FunS(C ?D C ′, E) FunS(C,E)

is a cartesian fibration with cartesian edges those sent to equivalences in FunS(C ′, E), and

FunS(C ?D C ′, E) FunS(C ′, E)

is a cocartesian fibration with cocartesian edges those sent to equivalences in FunS(C ′, E).

Proof. By inspection, the span

(∆1)[
π←− \(C ?D C ′)

π′−→ S]

satisfies the hypotheses of Thm. 2.23. Therefore, π∗π
′∗(\E S) is a categorical fibration over ∆1.

The claim now follows from [9, 2.4.7.10], and the consequence from [9, 2.4.7.5] and its opposite. �

The Quillen adjunction between S-join and S-slice. Our next goal is to obtain a relative join
and slice Quillen adjunction. To this end, we need a good understanding of the combinatorics of the
relative join (Prp. 4.11). We prepare for the proof of that proposition with a few lemmas.

4.9. Lemma. Let i, l ≥ −1 and j, k ≥ 0. Then

∆i ?∆j ? ∂∆k ?∆l
⊔

∆j?∂∆k?∆l

∆j+k+l+2 ∆i+j+k+l+3

is inner anodyne.

Proof. Let f : ∆j−1 ∆i ? ∆j−1 and g : Λk+1
0 ∆k+1. The map in question is f ? g ? ∆l, so is

inner anodyne by [9, 2.1.2.3]. �

By [9, 2.1.2.4], the join of a left anodyne map and an inclusion is left anodyne. We need a slight
refinement of this result:

4.10. Lemma. Let f : A0 A be a cofibration of simplicial sets.
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(1) Let g : B0 B be a right marked anodyne map between marked simplicial sets. Then

f [ ? g : A[0 ? B
⊔

A[0?B0

A[ ? B0 A[ ? B

is a right marked anodyne map.
(2) Let g : B0 B be a left marked anodyne map between marked simplicial sets. Then

g ? f [ : B ? A[0
⊔

B0?A[0

B0 ? A
[ B ? A[

is a left marked anodyne map.

Proof. We prove (1); the dual assertion (2) is proven by a similar argument. f lies in the weakly
saturated closure of the inclusions im : ∂∆m ∆m, so it suffices to check that i[m ? g is right
marked anodyne for the four classes of morphisms enumerated in [9, 3.1.1.1]. For g : (Λni )[ (∆n)[,
0 < i < n, i[m ? g obtained from an inner anodyne map by marking common edges, so is marked right

anodyne. For g : Λnn
\ ∆n\, i[m ? g is Λn+m+1

n+m+1

\
∆n+m+1\, so i[m ? g is marked right anodyne.

For the remaining two classes, i[m ? g is the identity because no markings are introduced when joining
two marked simplicial sets. �

The following proposition reveals a basic asymmetry of the relative join, which is related to our
choice of cocartesian fibrations to model functors.

4.11. Proposition. Let K be a marked simplicial set over S.

(1) For every \Λ
n
0 \∆

n a map of marked simplicial sets over S,

K ?S (\Λ
n
0 ×S O(S)

\
) K ?S (\∆

n ×S O(S)
\
)

is left marked anodyne, where the pullbacks \Λ
n
0 ×S O(S)

\
and \∆

n ×S O(S)
\

are formed
with respect to the source map e0 and are regarded as marked simplicial sets over S via the
target map e1.

(1’) For every Λn0 ∆n a map of simplicial sets over S,

∆n ×S O(S)
⊔

Λn0×SO(S)

K ?S (Λn0 ×S O(S)) K ?S (∆n ×S O(S))

is an inner anodyne map.
(2) Let e0 : C S be a cartesian fibration over S and let e1 : C S be any map of simplicial

sets. For every Λnk ∆n, 0 < k < n a map of simplicial sets over S,

K ?S (Λnk ×S C) K ?S (∆n ×S C)

is inner anodyne, where the pullbacks Λnk ×S C and ∆n ×S C are formed with respect to e0

and are regarded as simplicial sets over S via e1.
(3) For every Λnn

\ ∆n\ a map of simplicial sets over S,

K ?S Λnn
\ K ?S ∆n\

is right marked anodyne.

Proof. Let I be the set of simplices of K endowed with a total order such that σ < σ′ if the dimension
of σ is less than that of σ′, where we view the empty set as a simplex of dimension −1. Let J be the
set of epimorphisms χ : ∆j ∆n−1 endowed with a total order such that χ < χ′ if the dimension
of χ is less than that of χ′. Order I × J by (σ, χ) < (σ′, χ′) if σ < σ′ or σ = σ′ and χ < χ′. For any
simplex τ : ∆j ∆n, we let rk(τ) be the pullback

∆rk(τ)0 ∆n−1

∆j ∆n

rk(τ)

dk

τ
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We will let ι denote the map under consideration. We first prove (1). Given σ ∈ I and χ ∈ J , let

Xσ,χ be the sub-marked simplicial set of K ?S (\∆
n ×S O(S)

\
) on K ?S (\Λ

n
0 ×S O(S)

\
) and simplices

(σ′, τ ′) : ∆i ?∆j K ?S (∆n ×S O(S)) not in K ?S (Λn0 ×S O(S)) with (σ′, r0(e0 ◦ τ ′)) ≤ (σ, χ). If
(σ, χ) < (σ′, χ′), then we have an obvious inclusion Xσ,χ Xσ′,χ′ , and we let

X<(σ,χ) = (\Λ
n
0 ×S O(S)

\
)
⋃

(∪(σ′,χ′)<(σ,χ)Xσ,χ).

Since K ?S (\∆
n ×S O(S)

\
) = colim(σ,χ)∈I×J Xσ,χ, in order to show that ι is left marked anodyne

it suffices to show that X<(σ,χ) Xσ,χ is left marked anodyne for all (σ, χ) ∈ I × J . We will say
that a simplex of Xσ,χ is new if it does not belong to X<(σ,χ).

Let σ : ∆i K be an element of I and χ : ∆j ∆n−1 an element of J . Let λ = (σ, τ) :
∆i ? ∆j K ?S (∆n ×S O(S)) be any nondegenerate new simplex of Xσ,χ, so r0(e0 ◦ τ) = χ. Let
χ̄ : ∆j+1 ∆n be the unique epimorphism with r0(χ̄) = χ and let e : ∆1 ∆n ×S O(S) be a
cartesian edge over {0, 1} with e(1) = τ(0). The inclusion (∆1)]

⊔
∆0 ∆j

\∆
j+1 is right marked

anodyne, so we have a lift τ̄ in the following diagram

∆1
⊔

∆0 ∆j ∆n ×S O(S)

∆j+1 ∆n

τ ∪ e

χ̄

τ̄

By Lm. 4.10,

∆i ?∆j
⊔
∆j

\∆
j+1 ∆i ? \∆

j+1

is right marked anodyne. Using that (e1 ◦ τ̄)(e) is an equivalence, we obtain a lift

∆i ?∆j
⊔

∆j \∆
j+1 S∼

∆i ? \∆
j+1

πλ ∪ e1τ̄

which allows us to define λ̄ : ∆i ? ∆j+1 K ?S (∆n ×S O(S)) extending λ and τ̄ . Then λ̄ is
nondegenerate and every face of λ̄ except for λ = di+1(λ̄) lies in X<(σ,χ). We may thus form the
pushout

⊔
λ(Λi+j+2

i+1 , {i+ 1, i+ 2}) X<(σ,χ)

⊔
λ(∆i+j+2, {i+ 1, i+ 2}) X<(σ,χ),1

which factors the inclusion X<(σ,χ) X(σ,χ) as the composition of a left marked anodyne map
and an inclusion (there is one further complication involving markings: in the special case n = 1,
σ = ∅, j = 1, we may have that λ = τ is a marked edge, i.e. an equivalence over 1. Then the edges
of τ̄ are all marked, so we should form the pushout via maps (Λ2

0)] (∆2)], which are left marked
anodyne by [9, 3.1.1.7]).

Now for the inductive step suppose that we have defined a sequence of left marked anodyne maps

X<(σ,χ) . . . X<(σ,χ),m ⊂ X(σ,χ)

such that for all 0 < l ≤ m all new nondegenerate simplices in X(σ,χ) of dimension i + l + j lie in
X<(σ,χ),l and admit an extension to a i+ l + j + 1-simplex with the edge {i+ l, i+ l + 1} marked in
X<(σ,χ),l, and no new nondegenerate simplices of dimension > i+ j + l lie in X<(σ,χ),l. Let λ = (σ, τ)
be any new nondegenerate i+m+ j + 1-simplex not in X<(σ,χ),m. For 0 ≤ l < m let λl = (σ, τl) be a
nondegenerate i+m+j+1-simplex in X<(σ,χ),m with di+m(λl) = di+l+1(λ) and edge {i+m, i+m+1}
marked. τ and τ0, ..., τm−1 together define a map

τ ′ : Λm+1
m+1 ?∆j−1 ∆n ×S O(S)
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where the domain of τ is the subset {0, ...,m− 1,m+ 1, ...,m+ j + 1} and the domain of τl is the

subset {0, ..., l̂, ...,m+ j + 1}. Observe that the map Λm+1
m+1

\
?∆j−1 ∆m+1\ ?∆j−1 is right marked

anodyne, since it factors as

Λm+1
m+1

\
?∆j−1 ∆m+1\

⊔
Λm+1
m+1

\

Λm+1
m+1

\
?∆j−1 ∆m+1\ ?∆j−1

where the first map is obtained as the pushout of the right marked anodyne map Λm+1
m+1

\
∆m+1\

along the inclusion Λm+1
m+1

\
Λm+1
m+1

\
?∆j−1 and the second map is obtained by marking a common

edge of an inner anodyne map. Let χ̄ : ∆m+j+1 ∆n be the unique epimorphism with r0(χ̄) = χ.
Then we have a lift τ̄ in the following commutative diagram

Λm+1
m+1 ?∆j−1 ∆n ×S O(S)

∆m+1 ?∆j−1 ∆n

τ ′

χ̄

τ̄

By Lm. 4.10, the map

∆i ? Λm+1
m+1

\
?∆j−1

⊔
Λm+1
m+1

\
?∆j−1

∆m+1\ ?∆j−1 ∆i ?∆m+1\ ?∆j−1

is right marked anodyne. Since (e1 ◦ τ̄)({m,m + 1}) is an equivalence, we may extend (∪lπλl) ∪
πλ ∪ e1τ̄ to a map ∆i+m+j+2 S, which defines a nondegenerate (i+m+ j + 2)-simplex λ̄ with λ
as its (i+m+ 1)th face and which extends τ̄ . By construction every other face of λ̄ lies in X<(σ,χ),m.
Thus we may form the pushout

⊔
λ(Λi+m+j+2

i+m+1 , {i+m+ 1, i+m+ 2}) X<(σ,χ),m

⊔
λ(∆i+m+j+2, {i+m+ 1, i+m+ 2}) X<(σ,χ),m+1

and complete the inductive step (again, there is one further complication involving markings: in
the special case i = −1, n = 1, j = 0, m = 1, we may have that λ is marked. Then every edge of
λ̄ is marked since (Λ2

2)] (∆2)] is right marked anodyne, and we form the pushout along maps
(Λ2

1)] (∆2)]). Passing to the colimit, we deduce that X<(σ,χ) Xσ,χ is marked left anodyne,
which completes the proof.

For (1’), simply observe that if i > −1 we are attaching along inner horns.
We now modify the above proof to prove (2). Let Xσ,χ be the sub-simplicial set of K ?S (∆n×S C)

on K ?S (Λnk ×S C) and simplices (σ′, τ ′) : ∆i ?∆j K ?S (∆n ×S C) not in K ?S (Λnk ×S C) with
(σ′, rk(e0 ◦ τ ′)) ≤ (σ, χ). Let X<(σ,χ) = (K ? (Λnk ×S C))

⋃
(∪(σ′,χ′)<(σ,χ)Xσ,χ). We will show that

X<(σ,χ) Xσ,χ is inner anodyne for all (σ, χ) ∈ I × J .

Let σ : ∆i K be an element of I, χ : ∆j ∆n−1 an element of J , and let k′ be the first
vertex of χ with χ(k′) = k. Let λ = (σ, τ) : ∆i ?∆j K ?S (∆n ×S C) be any nondegenerate new
simplex of Xσ,χ, so rk(e0 ◦ τ) = χ. Let χ̄ : ∆j+1 ∆n be the unique epimorphism with rk(χ̄) = χ.
Combining [9, 2.1.2.3] and Lm. 4.10, we see that the inclusion

dk′ : ∆j = ∆k′−1 ?∆j−k′ ∆k′−1 ? \∆
j−k′+1

is right marked anodyne, so we have a lift τ̄ in the following diagram

∆j ∆n ×S C

∆j+1 ∆n

τ

χ̄

τ̄
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where τ̄({k′, k′ + 1}) is a cartesian edge. By Lm. 4.9, ∆i ? ∆j
⊔

∆j ∆j+1 ∆i ? ∆j+1 is inner
anodyne. We thus obtain an extension

∆i ?∆j
⊔

∆j ∆j+1 S

∆i ?∆j+1

πλ ∪ e1τ̄

which allows us to define λ̄ : ∆i ? ∆j+1 K ?S (∆n ×S C) extending λ and τ̄ . Then λ̄ is
nondegenerate and every face of λ̄ except for λ = di+k′+1(λ̄) lies in X<(σ,χ). We may thus form the
pushout

⊔
λ Λi+j+2

i+k′+1 X<(σ,χ)

⊔
λ ∆i+j+2 X<(σ,χ),1

which factors the inclusion X<(σ,χ) X(σ,χ) as the composition of an inner anodyne map and an
inclusion.

Now for the inductive step suppose that we have defined a sequence of inner anodyne maps

X<(σ,χ) ... X<(σ,χ),m ⊂ X(σ,χ)

such that for all 0 < l ≤ m all new nondegenerate simplices in X(σ,χ) of dimension i + l + j lie in
X<(σ,χ),l and admit an extension to a i+ l+ j+ 1-simplex such that the edge {i+k′+ l, i+k′+ l+ 1}
is sent to a cartesian edge of ∆n ×S C, and no new nondegenerate simplices of dimension > i+ j + l
lie in X<(σ,χ),l. Let λ = (σ, τ) be any new nondegenerate i+m+ j + 1-simplex not in X<(σ,χ),m. For
0 ≤ l < m let λl = (σ, τl) be a nondegenerate i+m+ j + 1-simplex in X<(σ,χ),m with di+m+k′(λl) =
di+l+k′+1(λ). τ and τ0, ..., τm−1 together define a map

τ ′ : ∆k′−1 ? Λm+1
m+1 ?∆j−k′−1 ∆n ×S C

where the domain of τ is the subset {0, ..., k′ +m− 1, k′ +m+ 1, ...,m+ j + 1} and the domain of

τl is the subset {0, ..., k̂′ + l, ...,m+ j + 1}. The map

∆k′−1 ? Λm+1
m+1

\
?∆j−k′−1 ∆k′−1 ?∆m+1\ ?∆j−k′−1

is ∆k′−1 joined with a right marked anodyne map, so is right marked anodyne by Lm. 4.10. Let
χ̄ : ∆m+j+1 ∆n be the unique epimorphism with rk(χ̄) = χ. Then we have a lift τ̄ in the following
commutative diagram

∆k′−1 ? Λm+1
m+1 ?∆j−k′−1 ∆n ×S C

∆m+j+1 ∆n

τ ′

χ̄

τ̄

such that τ̄({k′ +m, k′ +m+ 1}) is a cartesian edge. By Lemma 4.9, the map

∆i ?∆k′−1 ? ∂∆m ?∆j−k′
⊔

∆k′−1?∂∆m?∆j−k′

∆m+j+1 ∆i+m+j+2

is inner anodyne. Therefore, we may extend (∪lπλl) ∪ πλ ∪ e1τ̄ to a map ∆i+m+j+2 S, which
defines a nondegenerate (i + m + j + 2)-simplex λ̄ with λ as its (i + k′ + m + 1)th face and which
extends τ̄ . By construction every other face of λ̄ lies in X<(σ,χ),m. Thus we may form the pushout

⊔
λ Λi+m+j+2

i+k′+m+1 X<(σ,χ),m

⊔
λ ∆i+m+j+2 X<(σ,χ),m+1
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and complete the inductive step. Passing to the colimit, we deduce that X<(σ,χ) Xσ,χ is inner
anodyne, which completes the proof.

We finally modify the above proof to prove (3). Given σ ∈ I and χ ∈ J , let Xσ,χ be the sub-

marked simplicial set of K ?S ∆n\ on K ?S Λnn
\ and simplices (σ′, τ ′) : ∆i ? ∆j K ?S ∆n\ not in

K ?S Λnn
\ with (σ′, rn(τ ′)) ≤ (σ, χ). Let X<(σ,χ) = (K ?S Λnn

\)
⋃

(∪(σ′,χ′)<(σ,χ)Xσ,χ). We will show
that X<(σ,χ) Xσ,χ is right marked anodyne for all (σ, χ) ∈ I × J .

Let σ : ∆i K be an element of I and χ : ∆j ∆n−1 an element of J . Let λ = (σ, τ) :

∆i?∆j K?S∆n\ be any nondegenerate new simplex ofXσ,χ, so τ = rn(τ) = χ. Let χ̄ : ∆j+1 ∆n

be the unique epimorphism with rn(χ̄) = χ. By Lm. 4.9, the inclusion

∆i ?∆j
⊔
∆j

∆j+1 ∆i ?∆j+1

is inner anodyne, so we have an extension in the following diagram

∆i ?∆j
⊔

∆j ∆j+1 S

∆i ?∆j+1

πλ ∪ π2χ̄

which allows us to define λ̄ : ∆i ?∆j+1 K ?S ∆n\ extending λ and χ̄. Then λ̄ is nondegenerate
and every face of λ̄ except for λ = di+j+2(λ̄) lies in X<(σ,χ). We may thus form the pushout

⊔
λ Λi+j+2

i+j+2

\
X<(σ,χ)

⊔
λ ∆i+j+2\ X<(σ,χ),1

which factors the inclusion X<(σ,χ) X(σ,χ) as the composition of a right marked anodyne map
and an inclusion.

Now for the inductive step suppose that we have defined a sequence of right marked anodyne maps

X<(σ,χ) ... X<(σ,χ),m ⊂ X(σ,χ)

such that for all 0 < l ≤ m all new nondegenerate simplices in X(σ,χ) of dimension i + l + j lie in
X<(σ,χ),l and admit an extension to a i + l + j + 1-simplex, and no new nondegenerate simplices of
dimension > i+ j + l lie in X<(σ,χ),l. Let λ = (σ, τ) be any new nondegenerate i+m+ j + 1-simplex
not in X<(σ,χ),m. For 0 < l ≤ m let λl = (σ, τl) be a nondegenerate i+m+ j+ 1-simplex in X<(σ,χ),m

with di+m+j+1(λl) = di+j+l+1(λ) (note that τl = τ). By Lm. 4.9, the map

∆i ?∆j ? ∂∆m
⊔

∆j?∂∆m

∆j ?∆m ∆i ?∆j ?∆m

is inner anodyne. Therefore, we may extend πλ ∪ (∪lπλl) to a map ∆i+j+m+2 S and define a

(i + j + m + 2)-simplex λ̄ of K ? ∆n\ with di+j+m+2λ̄ = λ and di+j+l+1λ̄ = λ + l. By construction
every face of λ̄ except for λ lies in X<(σ,χ),m. Thus we may form the pushout

⊔
λ Λi+j+m+2

i+j+m+2

\
X<(σ,χ),m

⊔
λ ∆i+j+m+2\ X<(σ,χ),m+1

and complete the inductive step. Passing to the colimit, we deduce that X<(σ,χ) Xσ,χ is right
marked anodyne, which completes the proof.

�

4.12. Remark. The proof of Proposition 4.11 can be adapted to show that for any cartesian fibration
C S, \Λ

n
0 ×S C\ \∆

n ×S C\ is marked left anodyne (in the σ = ∅ case, we only use that
O(S) S is a cartesian fibration). As well, letting K = ∅, part (2) of Proposition 4.11 shows that
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Λnk ×S C ∆n ×S C is inner anodyne. This refines the theorem that marked left anodyne maps
resp. inner anodyne maps pullback to cocartesian equivalences resp. categorical equivalences along
cartesian fibrations.

For later use, we state a criterion for showing that a functor is left Quillen.

4.13. Lemma. Let M and N be model categories and let F : M N be a functor which preserves
cofibrations. Let I be a weakly saturated subset of the trivial cofibrations in M such that for every
object A ∈M , we have a map f : A A′ where f ∈ I and A′ is fibrant. Then F preserves trivial
cofibrations if and only if

(1) For every f ∈ I, F (f) is a trivial cofibration.
(2) F preserves trivial cofibrations between fibrant objects.

Proof. The ‘only if’ direction is obvious. For the other direction, let A B be a trivial cofibration
in M . We may form the diagram

A B

A′ A′
⊔
AB (A′

⊔
AB)′

where the vertical and lower right horizontal arrows are in I. Then our two assumptions along
with the two-out-of-three property of the weak equivalences shows that F (A) F (B) is a trivial
cofibration. �

4.14. Lemma. Let K be a simplicial set over S. Then

K ?S −,− ?S K : sSet/S sSetK//S

are left adjoints. Similarly, for K a marked simplicial set over S,

K ?S −,− ?S K : sSet+
/S sSet+

K//S

are left adjoints.

Proof. We will prove that K ?S − is a left adjoint in the unmarked case and leave the other cases to
the reader. Let F denote K?S− and define a functor G : sSetK//S sSet/S by letting G(K C)
be the simplicial set over S which satisfies

Hom/S(∆n, G(K C)) = HomK//S(K ?S ∆n, C);

this is evidently natural in K C. Define a unit map η : id GF on objects X by sending
σ : ∆n X to K ?S σ : K ?S ∆n K ?S X, which corresponds to ∆n G(K ?S X). Define a
counit map η : FG id on objects K C by sending λ = (σ, τ) : ∆i ?∆j K ?S G(K C)

to ∆i ? ∆j (σ,id)−−−→ K ?S ∆j τ ′−→ C, where τ ′ corresponds to τ : ∆j G(K C). Then it is
straightforward to verify the triangle identities, so F is adjoint to G. �

For the following pair of results, endow sSet+
/S with the cocartesian model structure and sSet+

K//S =

(sSet+
/S)K/ with the model structure created by the forgetful functor to sSet+

/S .

4.15. Theorem. Let K be a marked simplicial set over S. The functor

K ?S (−×S O(S)]) : sSet+
/S sSet+

K//S

is left Quillen.

Proof. We will denote the functor in question by F . First observe that F is the composite of the three
left adjoints e∗0, e1!, and K ?S −, so F is a left adjoint. F evidently preserve cofibrations, so it only
remains to check that F preserves the trivial cofibrations. We first verify that F preserves the left
marked anodyne maps. Since F preserves colimits it suffices to check that F preserves a collection of
morphisms which generate the left marked anodyne maps as a weakly saturated class. We verify that
F preserves the four classes of maps enumerated in [9, 3.1.1.1].
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(1): For ι : (Λnk )[ (∆n)[, 0 < k < n, the underlying map of simplicial sets of F (ι) is inner
anodyne by Proposition 4.11. F (ι) is obtained by marking common edges of an inner anodyne map,
so is left marked anodyne.

(2): For ι : \Λ
n
0 \∆

n, we observe that the map

K ?S (\Λ
n
0 ×S O(S)])

⊔
K?S(\Λn0×SO(S)\)

K ?S (\∆
n ×S O(S)

\
) K ?S (\∆

n ×S O(S)])

in the case n = 1 is marked left anodyne, since every marked edge in the codomain factors as a
composite of two marked edges in the domain, and is the identity if n > 1. It thus suffices to show

that K ?S (\Λ
n
0 ×S O(S)

\
) K ?S (\∆

n ×S O(S)
\
) is left marked anodyne, which is the content of

part 1 of 4.11.
(3) and (4): In both of these cases one has a map of marked simplicial sets A B whose underlying

map is an isomorphism of simplicial sets. Then

A F (A)

B F (B)

is a pushout square, so F (A) F (B) is left marked anodyne if A B is.
Next, let f : \C \D be a cocartesian equivalence between cocartesian fibrations over S. Let

g : \D \C be a homotopy inverse of f , so that there exists a homotopy h : \C × (∆1)] \C over
S from idC to g ◦ f . Define a map

φ : (K ?S (\C ×S O(S)]))× (∆1)] K ?S ((\C ×S O(S)])× (∆1)])

by sending a (i + j + 1)-simplex (λ, α) given by the data σ : ∆i K, τ : ∆j
\C ×S O(S)],

π ◦ λ : ∆i+j+1 ∆1, α : ∆i+j+1 ∆1 to a i + j + 1-simplex λ′ given by the data σ, (τ, α ◦ ι),
π ◦ λ where ι : ∆j ∆i ?∆j is the inclusion. It is easy to see that φ restricts to an isomorphism on
(K ?S (\C ×S O(S)]))× ∂∆1. We deduce that F (h) ◦ φ is a homotopy from F (g ◦ f) to the identity.
A similar argument concerning a chosen homotopy from f ◦ g to idD shows that F (f) is a cocartesian
equivalence. �

4.16. Theorem. Let K be a marked simplicial set over S. The functor

− ?S K : sSet+
/S sSet+

K//S

is left Quillen.

Proof. We first verify that −?SK preserves the four classes of left marked anodyne maps enumerated
in [9, 3.1.1.1]. (1) is handled by the dual of part (2) of Prp. 4.11. (2) is handled by the dual of part
(3) of Prp. 4.11. (3) and (4) are handled as in the proof of Thm. 4.15. Finally, the case of A B
a cocartesian equivalence between fibrant objects is also handled as in the proof of Thm. 4.15. �

4.17. Definition. Let K,C S be marked simplicial sets over S and let p : K C be a map over
S. Define the marked simplicial set C(p,S)/ S as the value of the right adjoint to K?S (−×SO(S)])

on K C S in sSet+
K//S . By Thm. 4.15, if C S is a S-category, then C(p,S)/ S is a

S-category. We will refer to C(p,S)/ as a S-undercategory of C.
Dually, define the marked simplicial set C/(p,S) S as the value of the right adjoint to − ?S

(K ×S O(S)]) on K C S in sSet+
K//S . By Thm. 4.16 applied to K ×S O(S)], if C S is a

S-category, then C/(p,S) S is a S-category. We will refer to C/(p,S) as a S-overcategory of C.

In the sequel, we will focus our attention on the S-undercategory and leave proofs of the evident
dual assertions to the reader.
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Functoriality in the diagram. We now study the functoriality of the S-undercategory with respect
to the diagram category. Given maps f : K L and p : L X of marked simplicial sets over S,
we have an induced map X(p,S)/ X(pf,S)/, which in terms of the functors that X(p,S)/ and X(pf,S)/

represent is given by precomposing L ?S (A×S O(S)]) X by f ?S id.
Recall that for category M admitting pushouts and a map f : K L, we have an adjunction

f! : MK/ ML/ :f∗

where f!(K X) = X
⊔
K L and f∗(L

p−→ X) = p ◦ f . If M is a model category and MK/,
ML/ are provided with the model structures induced from M , then (f!, f

∗) is a Quillen adjunction.
Moreover, if M is a left proper model category and f is a weak equivalence, then (f!, f

∗) is a Quillen
equivalence.

4.18. Proposition. Let f : K L be a cocartesian equivalence in sSet+
/S. Let C be a S-category

and let p : L \C be a map. Then \C(p,S)/ \C(pf,S)/ is a cocartesian equivalence in sSet+
/S.

Proof. Let F = f! ◦ (K ?S (−×S O(S)])) and let F ′ = L ?S (−×S O(S)]). Let G and G′ be the right
adjoints to F and F ′, respectively. Let α : F F ′ be the evident natural transformation and let

β : G′ G be the dual natural transformation, defined by G′
ηG′−−→ GFG′

GαG′−−−−→ GF ′G′
Gε′−−→ G.

Then βC : \C(p,S)/ \C(pf,S)/ is the map under consideration. By Thm. 4.16, αX is a cocartesian

equivalence for all X ∈ sSet+
/S . Therefore, by [7, 1.4.4(b)], βC is a cocartesian equivalence. �

4.19. Proposition. Consider a commutative diagram of marked simplicial sets

K C

L D

i q
p

where i is a cofibration and q is a fibration.

(1) The map

C(p,S)/ C(pi,S)/ ×D(qpi,S)/
D(qp,S)/

is a fibration.
(2) Let K = ∅ and D = S]. Then the map

C(p,S)/ C(pi,S)/
∼= FunS(S], C)

is a left fibration (of the underlying simplicial sets).

Proof. (1): Given a trivial cofibration A B, we need to solve lifting problems of the form

L ?S (A×S O(S)])
⊔
K?S(A×SO(S)])K ?S (B ×S O(S)]) C

L ?S (B ×S O(S)]) D

But the lefthand map is a trivial cofibration by Thm. 4.15.
(2): We need to solve lifting problems of the form

(∆n)[ ×S O(S)]
⊔

(Λni )[ K ?S ((Λni )[ ×S O(S)]) C

K ?S ((∆n)[ ×S O(S)]) S

where 0 ≤ i < n. But the lefthand map is a trivial cofibration by Prp. 4.11 (1’) and (2). �
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Combining (2) of the above proposition with Lm. 3.5 (2) (which supplies a trivial marked fibration
FunS(S], C) C), we obtain a map C(p,S)/ C which is a marked fibration and a left fibration,
and such that for any f : K L, the triangle

C(p,S)/ C(pf,S)/

C

commutes.

The universal mapping property of the S-slice. Because the S-join and slice Quillen adjunction
is not simplicial, we do not immediately obtain a universal mapping property characterizing the S-
slice. Our goal in this subsection is to supply such a universal mapping property (Prp. 4.25). We first
digress in order to recall how to slice Quillen bifunctors. Suppose V is a closed symmetric monoidal
category and M is enriched, tensored, and cotensored over V . Denote the internal hom by

Hom(−,−) : M op ×M V .

Define bifunctors

Homx/(−,−) : M op
x/ ×Mx/ V

Hom/x(−,−) : M op
/x ×M/x V

on objects f : x a, g : x b and f ′ : a x, g′ : b x to be pullbacks

Homx/(f, g) Hom(a, b) Hom/x(f ′, g′) Hom(a, b)

1 Hom(x, b) 1 Hom(a, x)

f∗

g

g′∗
f ′

and on morphisms in the obvious way (we abusively denote by g : 1 Hom(x, b) the map
corresponding to g under the natural isomorphisms Hom(1,Fun(x, b)) ∼= Hom(1 ⊗ x, b) ∼= Hom(x, b),
and likewise for f ′). It is easy to see that Homx/ and Hom/x preserve limits separately in each variable.

4.20. Lemma. In the above situation let M be a model category and P be a monoidal model category.
If Hom(−,−) is a right Quillen bifunctor, then Homx/(−,−) and Hom/x(−,−) are right Quillen
bifunctors, where we endow Mx/ and M/x with the model structures created by the forgetful functor
to M .

Proof. We prove the assertion for Homx/(−,−), the proof for Hom/x(−,−) being identical. Let

i : a b and f : c d be morphisms in Mx/ (so they are compatible with the structure maps
πa, ..., πd). In the commutative diagram

Homx/(πb, πc) Hom(b, c)

Homx/(πa, πc)×Homx/(πa,πd) Homx/(πb, πd) Hom(a, c)×Hom(a,d) Hom(b, d)

1 Hom(x, c)

it is easy to see that the lower square and the rectangle are pullback squares, so the upper square
is a pullback square. It is now clear that if Hom(−,−) is a right Quillen bifunctor, then Homx/(−,−)
is as well. �

We apply 4.20 to the bifunctors

MapK//S(−,−) :sSet+
K//S

op × sSet+
K//S sSetQuillen

FunK//S(−,−) :sSet+
K//S

op × sSet+
K//S sSetJoyal

induced by MapS(−,−) and FunS(−,−).
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4.21. Lemma. Let K, A, and B be simplicial sets and define a map

A× (K ? B) K ? (A×B)

by sending the data (∆n A,∆k K,∆n−k−1 B) of a n-simplex of A × (K ? B) to the
data (∆k K,∆n−k−1 A×B) of a n-simplex of K ? (A×B). Then

φ : A× (K ? B)
⊔
A×K

K K ? (A×B)

is a categorical equivalence.

Proof. Recall ([9, 4.2.1.2]) that there is a map

ηX,Y : X � Y = X
⊔

X×Y×{0}

X × Y ×∆1
⊔

X×Y×{1}

Y X ? Y

natural in X and Y which is always a categorical equivalence. Thus

f = (A× ηK,B) t idK : A× (K �B)
⊔
A×K

K A× (K ? B)
⊔
A×K

K

is a categorical equivalence. The domain is isomorphic to K � (A×B), and it is easy to check that
the map ηK,A×B is the composite

K � (A×B)
f−→ A× (K ? B)

⊔
A×K

K
φ−→ K ? (A×B).

Using the 2 out of 3 property of the categorical equivalences, we deduce that φ is a categorical
equivalence. �

4.22. Lemma. For all L ∈ sSet+
/S, we have a natural equivalence

φ : FunS(L, \C(p,S)/)
'−→ FunK//S(K ?S (L×S O(S)]), \C).

Proof. Define bisimplicial sets X,Y : ∆op sSet by

Xn = MapK//S(K ?S ((∆n)[ × L×S O(S)]), \C)

Yn = Map(∆n,FunK//S(K ?S (L×S O(S)]), \C))

∼= MapK//S((∆n)[ × (K ?S (L×S O(S)])
⊔

(∆n)[×K

K, \C).

and define a map of bisimplicial sets Φ : X Y by precomposing levelwise by the map

gL,n : (∆n)[ × (K ?S (L×S O(S)]))
⊔

(∆n)[×K

K K ?S ((∆n)[ × L×S O(S)])

adjoint as a map over S×∆1 to the identity over S×∂∆1. Taking levelwise zero simplices then defines
the map φ, which is clearly natural in L, K, and C. By Thm. 4.16, taking a fibrant replacement of
K we may suppose that K is fibrant. We first check that X and Y are complete Segal spaces. Y is
a complete Segal space as it arises from a ∞-category ([8, 4.12]). For X, since MapK//S(−,−) is a
right Quillen bifunctor, we only have to observe that:

I Every monomorphism A B of simplicial sets induces a cofibration

K ?S (A[ × L×S O(S)]) K ?S (B[ × L×S O(S)])

so X is Reedy fibrant.
I The spine inclusion ιn : Sp(n) ∆n induces a trivial cofibration

K ?S (Sp(n)[ × L×S O(S)]) K ?S ((∆n)[ × L×S O(S)]);

ιn is inner anodyne, so this follows from Thm. 4.15 and [9, 3.1.4.2].
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I The map π : E ∆0 where E is the nerve of the contractible groupoid with two elements
induces a cocartesian equivalence

K ?S (E[ × L×S O(S)]) K ?S (L×S O(S)]);

π[ is a cocartesian equivalence (as the composite of E[ E] and E] ∆0), so this also
follows from Thm. 4.15 and [9, 3.1.4.2].

We next prove that Φ is an equivalence in the complete Segal model structure. For this, we will
prove that each map gL,n is a cocartesian equivalence in sSet+

/S . Both sides preserves colimits as a

functor of L (valued in sSet+
K//S), so by left properness and the stability of cocartesian equivalences

under filtered colimits we reduce to the case L is an m-simplex with some marking. In particular,
(∆m)[ ×S O(S)] S is fibrant in sSet+

/S . By [9, 4.2.4.1] we may check that the square of fibrant

objects

(∆n)[ ×K K

(∆n)[ × (K ?S ((∆m)[ ?S O(S)])) K ?S ((∆n)[ × (∆m)[ ×S O(S)])

is a homotopy pushout square in the underlying∞-category Catcocart
∞,S ' Fun(S,Cat∞), where colimits

are computed objectwise. In other words, we may check that for every s ∈ S, the fiber of the square
over s is a homotopy pushout square in sSet, which holds by Lm. 4.21. Pushing out along the
cofibration (∆m)[ ×S O(S)] L ×S O(S)] and using left properness, we deduce that gL,m is a
cocartesian equivalence. Finally, we invoke [8, 4.11] to deduce that φ is a categorical equivalence. �

4.23. Lemma. Let L S be a cocartesian fibration. Then idK ? ιL : K?S \L K ?S (\L×S O(S)])

is a cocartesian equivalence in sSet+
/S.

Proof. By Thm. 4.16, taking a fibrant replacement of K we may suppose that K is fibrant. By 13.4,
it suffices to show that for every s ∈ S, K∼s ? L∼s K∼s ? (\L×S (S/s)]) is a marked equivalence in

sSet+. Observe that the cartesian equivalence {s} (S/s)] pulls back by the cocartesian fibration

\L S] to a marked equivalence L∼s \L ×S (S/s)]. Then by Thm. 4.15 for S = ∆0, K∼s ? −
preserves marked equivalences, which concludes the proof. �

4.24. Notation. Let K,C,D be S-categories and let F : K C, G : K D be S-functors. Define
FunK//S(C,D) to be the pullback

FunK//S(C,D) FunS(C,D)

S FunS(K,D).

F∗

σG

Note that by Prp. 3.7, the defining pullback square is a homotopy pullback square if F is a
monomorphism.

4.25. Proposition. Let K,L,C be S-categories and let p : K C, q : L C be S-functors.

(1) We have an equivalence

ψ : FunS(L,C(p,S)/)
'−→ FunK//S(K ?S L,C).

(2) We have an equivalence

ψ′ : FunS(L,C/(q,S))
'−→ FunL//S(K ?S L,C)

(3) We have equivalences

Fun/C(L,C(p,S)/) FunKtL//S(K ?S L,C) Fun/C(K,C/(q,S)).
ψp

'
ψ′q

'
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Proof. (1): Define the S-functor ψ as follows: suppose given a marked simplicial set A and a map
A FunS(L,C(p,S)/) over S. This is equivalently given by the datum of a map

fA : \K ?S ((A×S O(S)] ×S \L)×S O(S)]) \C

under K and over S. Let

\K
⊔

A×SO(S)]×S\K

(A×S O(S)])×S (\K ?S (\L×S O(S)])) K ?S (A×S O(S)] ×S \L×S O(S)])

be the map over S × ∆1 adjoint to the identity over S × ∂∆1. Precomposing fA by this and ιL :

\L \L×S O(S)] on that factor defines the desired map A FunK//S(K ?S L,C).
Now to check that ψ is an equivalence, we may work fiberwise and combine Lm. 4.22 and Lm.

4.23.
The proof of (2) is by a parallel argument.
(3): We prove that ψq is an equivalence; a parallel argument will work for ψ′p. FunKtL//S(K?SL,C)

fits into a diagram

FunKtL//S(K ?S L,C) FunK//S(K ?S L,C) FunS(K ?S L,C)

S FunK//S(K
⊔
L,C) FunS(K

⊔
L,C)

S FunS(K,C)

σptq

σp

in which every square is a pullback square. The map ψq is then defined to be the pullback of the map
of spans

FunS(L,C(p,S)/) FunS(L,C) S

FunK//S(K ?S L,C) FunK//S(K
⊔
L,C) S

ψ pt−

σq

=

in which the vertical arrows are equivalences. By Prp. 4.19 and FunS(L,−) being right Quillen,
the top left horizontal arrow is a S-fibration, and by Prp. 3.7, the bottom left horizontal arrow is a
S-fibration. It follows that ψq is an equivalence. �

In light of Prp. 4.25, we have evident ‘alternative’ S-slice S-categories, whose definition more
closely adheres to the intuition that a slice category is a category of extensions.

4.26. Definition. Let p : K C be a S-functor. We define the alternative S-undercategory

C(p,S)/ = FunK//S(K ?S S,C).

Similarly, we define the alternative S-overcategory

C/(p,S) = FunK//S(S ?S K,C).

4.27. Corollary. Let p : K C and q : L C be S-functors.

(1) We have equivalences C(p,S)/
'−→ C(p,S)/ and C/(q,S)

'−→ C/(q,S).

(2) We have an equivalence Fun/C(L,C(p,S)/) ' Fun/C(K,C/(q,S)) through a natural zig-zag.

Proof. For (1), let L = S and K = S in Prp. 4.25 (1) and (2), respectively. For (2), combine the
preceding (1) and Prp. 4.25 (3). �

4.28. Warning. When S = ∆0, the alternative S-undercategory C(p,S)/ ∼= {p}×Fun(K,C) Fun(K�, C)

differs from Lurie’s alternative undercategory Cp/. However, we have a comparison functor

{p} ×Fun(K,C) Fun(K�, C) Cp/

which is a categorical equivalence and which factors through the categorical equivalence Cp/ Cp/

of [9, 4.2.1.5].
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Slicing over and under S-points. We give a smaller model for slicing over and under S-points in
an S-category C.

4.29. Notation. Suppose C an S-category. Let OS(C) = F̃unS(S×∆1, C) ∼= S×O(S)O(C) denote the

fiberwise arrow S-category of C. Given an object x ∈ C, let C/x = OS(C)×Cx and Cx/ = x×COS(C).

4.30. Proposition. Let x ∈ C be an object and denote by ix : x Cx the x-functor defined by x.
We have natural equivalences of x-categories

Cx
/(x,ix) ' C/x

Cx
/(ix,x) ' Cx/.

Proof. For any functor S′ S and S-category C, OS(C)×SS′ ∼= OS′(C×SS′). Therefore, OS(C)×C
x ∼= Ox(Cx) ×Cx x and likewise for x ×C OS(C). Changing base to x, we may suppose S = x and
ix = i : S C is any S-functor. The identity section S O(S) induces a morphism of spans

S FunS(S,C) FunS(S ×∆1, C)

S C F̃unS(S ×∆1, C)

σi

=

i

with the vertical maps equivalences. Taking pullbacks now yields the claim (where we use the isomor-
phism S ?S S ∼= S ×∆1 to identify the upper pullback with the S-slice category in question). �

4.31. Proposition. We have a natural equivalence Cx/ ' Cx/ of left fibrations over C.

Proof. Using the marked left anodyne map \Λ
2
1 \∆

2 and the map of Lm. 2.22 for n = 2, we obtain
a span

Fun(\∆
2, \C)

Fun((∆{0,1})], \C)×C{1} Fun(∆{1,2}, C) Fun(∆{0,2}, C)×S{0,2} Fun(∆2, S).

' '

Pulling back via {x} ×C{0} − on the left and − ×S{1,2} S on the right, and using that the inclusion
∆{0,2} ∆2 ∪∆{1,2} ∆0 is a categorical equivalence, we get

{x} ×C{0} Fun(\∆
2, \C)×S{1,2} S

Cx/ Cx/.

' '

�

5. Limits and colimits

5.1. Definition. Let C be a S-category and σ : S C be a cocartesian section. We say that σ is a
S-initial object if σ(s) is an initial object for all objects s ∈ S.

5.2. Definition. Let K and C be S-categories. Let p : K ?S S C be an extension of a S-functor
p : K C. From the commutativity of the diagram

S FunS(K ?S S,C)

S FunS(K,C)

σp

=

σp

we see that σp defines a cocartesian section of C(p,S)/, which we also denote by σp. We say that p is
a S-colimit diagram if σp is a S-initial object. If p is a S-colimit diagram, then p|S : S C is said
to be a S-colimit of p.
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5.3. Remark. In view of the comparison result Cor. 4.27, we could also use the S-slice category
C(p,S)/ to make the definition of a S-colimit diagram. This would yield some additional generality,

in that C(p,S)/ is defined for an arbitrary marked simplicial set K. However, the construction C(p,S)/

is easier to relate to functor categories, which we need to do to show that the left adjoint to the
restriction along K ⊂ K ?S S computes colimits (a special case of Cor. 9.16).

There are a couple instances where the notion of S-colimit specializes to a notion of ordinary
category theory. For example, we have the following pair of propositions computing S-colimits and
S-limits in an S-category of objects ES as left or right Kan extensions in E.

5.4. Proposition. Let p : K ?S S CS be a S-functor extending p : K CS. Suppose further
that a left Kan extension of p† to a functor K ?S S C exists. Then the following are equivalent:

(1) p is a S-colimit diagram.
(2) p† is a left Kan extension of p†.
(3) p†|K�

s
is a colimit diagram for all s ∈ S.

Proof. (2) and (3) are equivalent because left Kan extensions along cocartesian fibrations are computed
fiberwise. Suppose (3). To prove (1), we want to show that for every s ∈ S, ps is an initial object

in ((CS)(p,S)/)s. But ((CS)(p,S)/)s is equivalent to the fiber of Fun(Ks ?s s, C) Fun(Ks, C) over

p†|Ks , so to prove the claim it suffices to show that the functor p†|Ks is a left Kan extension of p|Ks .
This holds by the equivalence of (2) and (3) for Ss/.

Conversely, suppose (1). Since we supposed that a left Kan extension of p† exists, left Kan ex-
tensions of p†|Ks all exist and any initial object in the fiber of Fun(Ks ?s s, C) Fun(Ks, C) over

p†|Ks is a left Kan extension of p†|Ks , necessarily a fiberwise colimit diagram (we need this hypothesis
because Kan extensions as defined in [9, §4.3.2] are always pointwise Kan extensions). This implies
(3). �

5.5. Proposition. Let p : S ?S K CS be a S-functor extending p : K CS. Suppose further
that a right Kan extension of p† to a functor S ?S K C exists. Then the following are equivalent:

(1) p is a S-limit diagram.
(2) p† is a right Kan extension of p†.

(2’) p†|s?sKs is a right Kan extension of p†|Ks for all s ∈ S.

(3) p†|K�
s

is a limit diagram for all s ∈ S.

Proof. We first observe that because the inclusion S S ?S K is left adjoint to the structure map
S ?S K S of the cocartesian fibration,

(S ?S K)s/ ' Ss/ ×S (S ?S K) ∼= s ?s Ks.

The equivalence of (2) and (2’) now follows from the formula for a right Kan extension. Also, if we
view K�

s as mapping to S ?S K via {s} ? Ks s ?s Ks S ?S K where the first map is adjoint

to ({s} s, id), then (2) and (3) are also equivalent by the same argument. Finally, (2’) implies (1)
by definition, and (1) implies (2’) under our additional assumption that a right Kan extension of p†

exists (for the same reason as given in the proof of Prp. 5.4). �

If S is a Kan complex, then the notion of S-colimit reduces to the usual notion of colimit.

5.6. Proposition. Let S be a Kan complex. Then a S-functor p : K?SS C is a S-colimit diagram
if and only if for every object s ∈ S, p|s : (Ks)

� Cs is a colimit diagram.

Proof. If S is a Kan complex, then for every s ∈ S, Ss/ is a contractible Kan complex. Therefore, for
all s ∈ S we have (C(p,S)/)s ' {ps} ×Fun(Ks,Cs) Fun(K�

s , Cs), which proves the claim. �

We say that K is a constant S-category if it is equivalent to S × L for L an ∞-category. We have
an isomorphism L� × S (L × S) ?S S (defined as a map over S × ∆1 to be the adjoint to the
identity on (L× S, S)).

5.7. Proposition. A S-functor p : L�×S C is a S-colimit diagram if and only if for every object
s ∈ S, ps : L� Cs is a colimit diagram.
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Proof. Observe that

(C(p,S)/)s = {ps} ×Fun
Ss/

(L×Ss/,Cs) FunSs/(L� × Ss/, Cs) ' {ps} ×Fun(L,Cs) Fun(L�, Cs).

Therefore, σp : S C(p,S)/ is S-initial if and only if for all s ∈ S, {ps} ∈ {ps}×Fun(L,Cs) Fun(L�, Cs)
is an initial object, which is the claim. �

5.8. Corollary. Suppose C is a S-category such that Cs admits all colimits for every object s ∈ S
and the pushforward functors α! : Cs Ct preserve all colimits for every morphism α : s→ t in S.
Then C admits all S-colimits indexed by constant diagrams.

Proof. First suppose that S has an initial object s. Suppose that p : L× S C is a S-functor. Let
ps : L� Cs be a colimit diagram extending ps. Let p : L�×S C be a S-functor corresponding
to ps under the equivalence FunS(L� × S,C) ' Fun(L�, Cs), which we may suppose extends p. By
Prp. 5.7, p is a S-colimit diagram.

The general case now follows from Thm. 9.15, taking φ : C D to be L× S S. �

We now turn to the example of corepresentable fibrations.

5.9. Definition. Let s ∈ S be an object and let K be an Ss/-category which is equivalent to a

coproduct of corepresentable fibrations
∐
i∈I S

αi/ '
∐
i∈I S

ti/
∐
α∗i−−−→ Ss/ for αi : s → ti a collection

of morphisms in S. Let p : K C ×S Ss/ be a Ss/-functor, so p selects objects xi ∈ Cti . Let
p : K ?Ss/ S

s/ C ×S Ss/ be a Ss/-colimit diagram extending p, and let y = p(v) ∈ Cs for v = ids
the cone point. Then we say that y is the S-coproduct of {xi}i∈I along {αi}i∈I , and we adopt the
notation y =

∐
αi
xi.

Our choice of terminology is guided by the following result, which shows that a Ss/-colimit of a
Ss/-functor p : Sα/ ' St/ C obtains the value of a left adjoint to the pushforward functor α! on
p(t). In the case of S = Oop

G , C = Top
G

or SpG, and K = Oop
H , this is the induction or indexed

coproduct functor from H to G.

5.10. Proposition. Let C be a S-category, let α : s→ t be a morphism in C, and let π : M ∆1 be
a cartesian fibration classified by the pushforward functor α! : Cs Ct. Let p : St/ C ×S Ss/
be a Ss/-functor and let x = p(idt) ∈ Ct. Then the data of a Ss/-colimit diagram extending p yields
a π-cocartesian edge e in M with d0(e) = x and lifting 0→ 1.

Proof. Let p : St/ ?Ss/ S
s/ C ×S Ss/ be a Ss/-colimit diagram extending p. Let y = p(ids) and

let f ′ : ∆1 St/ ?Ss/ S
s/ be the edge connecting idt to α. We may suppose that M is given by the

relative nerve of α!, so that edges in M over ∆1 are given by commutative squares

{1} Cs

∆1 Ct.

α!

Then let e be the edge in M determined by y and f = p ◦ f ′ : x→ α!y. By definition, d0(e) = x.
We claim that e is π-cocartesian. This holds if and only if for every y′ ∈ Cs the map

MapCs(y, y
′) MapCt(x, α!y

′)

induced by f is an equivalence. But the local variant of the adjunction of Thm. 10.4 implies this
(passing to global sections). �

S-coproducts also satisfy a base-change condition. This is awkward to articulate in general, because
the pullback of a corepresentable fibration along another need not be corepresentable. However, if
we impose the additional hypothesis that T = Sop admits multipullbacks, then a pullback of a
corepresentable fibration decomposes as a finite coproduct of corepresentable fibrations. In this case,
we have the following useful reformulation of the base-change condition. Let X ⊂ O(FT ) be the full
subcategory on those arrows whose source lies in T and consider the span

(FT )]
ev1←−− \X

ev0−−→ T ].
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This satisfies the dual of the hypotheses of Thm. 2.23, so C× := (ev0)∗(ev1)∗((C∨)
\
) is a cartesian

fibration over FT (with the cartesian edges marked), where C∨ T is the dual cartesian fibra-
tion of [3]. Unwinding the definitions, given a T -set U =

∐
i si, we have that the fiber (C×)U '

FunT (
∐
i T

/si , C∨) '
∏
i Csi , and given a morphism of T -sets α : U V , the pullback functor

α∗ : (C×)U (C×)V is induced by restriction.

5.11. Proposition. C admits finite S-coproducts if and only if π : C× FT is a Beck-Chevalley
fibration, i.e. π is both cocartesian and cartesian, and for every pullback square

W V ′

U V

α′

β′ β

α

in FT , the natural transformation

(∗) (α′)!(β
′)∗ β∗α!

adjoint to the equivalence (β′)∗α∗ ' (α′)∗β∗ is itself an equivalence.

Proof. By Thm. 10.4, C admits finite S-coproducts if and only if for every finite collection of mor-
phisms {αi : s→ ti}, the restriction functor

(
∐

αi)
∗ : FunS(Ss/, C) FunS(

∐
i

Sti/, C)

admits a left S-adjoint, in which case that left S-adjoint is computed by the S-coproduct along the αi.
This in turn is immediately equivalent to π being additionally cocartesian and (∗) being an equivalence
for α =

∐
αi :

∐
ti → s and all morphisms β : s′ → s in T . Finally, note that the apparently more

general case of (∗) being an equivalence for any pullback square is actually determined by this, because
any map α : U =

∐
ti → V =

∐
sj is the data of f : I → J and {αij : sj → ti}i∈f−1(j), whence

α∗ = (αij)
∗ :
∏
j Csj

∏
i Cti , etc. yields a decomposition of the map (∗) in terms of the ‘basic’

squares that we already handled. �

We conclude this subsection by introducing a bit of useful terminology.

5.12. Definition. Let C be a S-category. We say that C is S-cocomplete if, for every object s ∈ S
and Ss/-diagram p : K Cs with K small, p admits a Ss/-colimit.

5.13. Remark. Suppose that E is S-cocomplete. Then taking D = S in Thm. 9.15, E admits all
(small) S-colimits. However, the converse may fail: if we suppose that E admits all S-colimits, then
any Ss/-diagram Ks Es pulled back from a S-diagram K E admits a Ss/-colimit; however,

not every Ss/-diagram need be of this form.

Vertical opposites. In this subsection we study the vertical opposite construction of [3], with the
goal of justifying our intuition that the theory of S-limits can be recovered from that of S-colimits,
and vice-versa.

5.14. Recollection. Suppose X T a cocartesian fibration. Then the simplicial set Xvop is defined
to have n-simplices

\Õ(∆n) \X

(∆n)] T ].

ev1

The forgetful map Xvop T is a cocartesian fibration with cocartesian edges given by Õ(∆1)] \X.

For every t ∈ T , we have an equivalence Xop
t
'−→ Xvop

t implemented by the map which precomposes

by ev0 : \Õ(∆n) ((∆n)op)[, which is an equivalence in sSet+.
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Dually, suppose Y T a cartesian fibration. Then the simplicial set Y vop is defined to have
n-simplices

(Õ(∆n)op)
\

Y \

(∆n)] T ].

evop
0

and similarly the forgetful map Y vop T is a cartesian fibration with fibers Y vop
t

'←− Y op
t . As

a warning, note that the definition of the underlying simplicial set of (−)vop changes depending on
whether the input is a cocartesian or cartesian fibration.

Define a functor Õ ′(−) : sSet+
/S sSet+

/S by

Õ ′(A
π−→ S) = (Õ(A),EA)

π◦ev1−−−−→ S

where an edge e is in EA just in case ev0(e) is marked in Aop. Note that Õ(−) preserves colimits

since it is defined as precomposition by ∆op (rev?id)op

−−−−−−→ ∆op, and from this it easily follows that Õ ′(−)

also preserves colimits. By the adjoint functor theorem, Õ ′(−) admits a right adjoint, which we label
(−)vop; this agrees with the previously defined (−)vop for cocartesian fibrations \X S].

5.15. Proposition. The adjunction

Õ ′(−) : sSet+
/S sSet+

/S :(−)vop

is a Quillen equivalence with respect to the cocartesian model structure on sSet+
/S.

Proof. We first prove the adjunction is Quillen by employing the criterion of Lm. 4.13. Consider the
four classes of maps which generate the left marked anodyne maps:

(1) i : Λnk ∆n, 0 < k < n: By [1, 12.15], Õ(Λnk ) Õ(∆n) is inner anodyne, so Õ ′(i) is left
marked anodyne.

(2) i : \Λ
n
0 \∆

n: We can adapt the proof of [1, 12.16] to show that Õ ′(i) is a cocartesian equiv-

alence in sSet+
/S (even though it fails to be left marked anodyne). The basic fact underlying

this is that a right marked anodyne map is an equivalence in sSet+, so in sSet+
/S if it lies

entirely over an object; details are left to the reader.

(3) i : K[ K] for K a Kan complex: Because Õ(K) Kop ×K is a left fibration, Õ(K) is

then again a Kan complex. It follows that Õ ′(i) is left marked anodyne.
(4) (Λ2

1)] ∪Λ2
1

(∆2)[ (∆2)]: Obvious from the definitions.

It remains to show that for a trivial cofibration f : \X \Y between fibrant objects, Õ ′(f) is again

a trivial cofibration. Since Õ(X) Õ(Y ) is a map of cocartesian fibrations over S and the marking

on Õ ′(−) contains these cocartesian edges, by Prp. 13.4 it suffices to show that for every object s ∈ S,

Õ ′(X)s Õ ′(Y )s is an equivalence in sSet+. We have a commutative square

Õ ′(X)s Õ ′(Y )s

X]
s Y ]s

fs

where the vertical maps are left fibrations and the bottom map is an equivalence in sSet+. Therefore,

the map X]
s ×Y ]s Õ ′(Y )s Õ ′(Y )s is an equivalence in sSet+. Applying Prp. 13.4 once more, we

reduce to showing that for every object x1 ∈ X, Õ ′(X)x1
Õ ′(Y )f(x1) is an equivalence in sSet+.
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Now employing the source maps, we have a commutative square

Õ ′(X)x1 Õ ′(Y )f(x1)

Xop\ Y op\fop

where the vertical maps are left fibrations and the bottom horizontal map is a cartesian equivalence in

sSet+
/Sop . Therefore, the map Xop×Y op Õ ′(Y )s Õ ′(Y )s is a cartesian equivalence. By a third appli-

cation of Prp. 13.4, we reduce to showing that for every object x0 ∈ X, Õ ′(X)(x0,x1) Õ ′(Y )(f(x0),f(x1))

is an equivalence. But now both sides are endowed with the maximal marking and the map is equiv-

alent to MapX(x0, x1)
f∗−→ MapY (f(x0), f(x1)), which is an equivalence by assumption.

The fact that this Quillen adjunction is an equivalence follows immediately from [3, 1.7]. �

5.16. Lemma. Let C S be a cocartesian fibration.

(1) Let f : S′ S be a functor. Then we have an isomorphism f∗(Cvop) ∼= f∗(C)vop.
(2) Let g : S T be a cartesian fibration and let C be a S-category. Then there is a T -functor

χ : g∗(C)vop g∗(C
vop) natural in C which is an equivalence.

Proof. (1) is obvious from the definitions. For (2), the map χ is defined as follows: an n-simplex of
g∗(C)vop over σ ∈ Tn is given by the data of a commutative diagram

\Õ(∆n)×T ] S] \C

(∆n ×T S)] S]
g∗σ

and precomposition by the obvious map Õ(∆n×T S) Õ(∆n)×T S yields an n-simplex of g∗(C
vop).

We now show that for all t ∈ T , χt is a categorical equivalence. Because χt is obtained by taking
levelwise 0-simplices of the map of complete Segal spaces

MapS(\Õ(∆•)× S]t , \C) MapS(\Õ(∆•)× Õ(St)
], \C),

it suffices to show that for all n, \Õ(∆n) × Õ(St)
]

\Õ(∆n) × S]t is a cocartesian equivalence in

sSet+
/S . As a special case of Prp. 6.3, Õ(St)

] S]t is a cocartesian equivalence in sSet+
/St

, so the

claim follows. �

5.17. Lemma. The map evop : (Õ(∆n)op)
\

(∆n)] × ((∆n)op)[ is left marked anodyne.

Proof. For convenience, we will relabel Õ(∆n)op as the nerve of the poset In with objects ij, 0 ≤ i ≤
j ≤ n and maps ij kl for i ≤ k and j ≤ l. Then an edge ij → kl is marked in In just in case j = l,
and the map evop becomes the projection ρn : In (∆n)]× (∆n)[, ij 7→ (i, j). Let fn : (∆n)[ In
be the map which sends i to 0i. Then ρn ◦ fn : {0}× (∆n)[ (∆n)]× (∆n)[ is left marked anodyne,
so by the right cancellativity of left marked anodyne maps it suffices to show that in is left marked
anodyne. For this, we factor fn as the composition

(∆n)[ = In,−1 In,0 . . . In,n = In

where In,k ⊂ In is the subcategory on objects ij, i = 0 or j ≤ k (and inherits the marking from
In), and argue that each inclusion gk : In,k ⊂ In,k+1 is left marked anodyne. For this, note that gk
fits into a pushout square

{0} × (∆k+1)[
⋃
{0}×(∆k)[(∆

n−k−1)] × (∆k)[ (∆n−k−1)] × (∆k+1)[

In,k In,k+1
gk

with the upper horizontal map marked left anodyne. �
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5.18. Construction. Suppose T an∞-category, X,Z T cocartesian fibrations, Y T a cartesian
fibration, and a map µ : \X ×T Y \ \Z of marked simplicial sets over T . We define a map

µvop : \X
vop ×T Y vop\

\Z
vop by the following process:

Let Jn be the nerve of the poset with objects ij, 0 ≤ i ≤ n, −n ≤ j ≤ n and −j ≤ i and maps
ij → kl if i ≤ k, j ≤ l. Mark edges ij kl if j = l. Let In ⊂ Jn be the subcategory on ij with j ≥ 0
and I ′n ⊂ Jn be the subcategory on ij with j ≤ 0; also give In, I ′n the induced markings. We have an
inclusion (∆n)] Jn given by i 7→ i0 which restricts to inclusions (∆n)] In, (∆n)] I ′n and
induces a map γn : In ∪(∆n)] I

′
n ⊂ Jn.

Define auxiliary (unmarked) simplicial sets Z ′ T by Hom/T (∆n, Z ′) = Hom/T (Jn, \Z) and
Z ′′ T by Hom/T (∆n, Z ′′) = Hom/T (In ∪(∆n)] I

′
n, \Z), where Jn ∆n via ij 7→ i. We have

a map r : Z ′ Z ′′ given by restriction along the γn, which we claim is a trivial fibration. By a
standard reduction, for this it suffices to show that γn is left marked anodyne. Indeed, this follows
from Lm. 5.17 applied to In (∆n)]×∆n and the observation that the map ∆n×∆n∪∆n I ′n Jn
is inner anodyne, whose proof we leave to the reader.

Define also a map Z ′ Zvop over T by restriction along the map \Õ(∆n) Jn which sends ij
to jn if i = 0 and j(−i) otherwise. Finally, define a map Xvop ×T Y vop Z ′′ over T as follows: a
map ∆n Xvop ×T Y vop is given by the data

\Õ(∆n) \X

(∆n)] T ]

,

(Õ(∆n)op)
\

Y \

(∆n)] T ].

We have isomorphisms \Õ(∆n) ∼= I ′n and (Õ(∆n)op)
\ ∼= In, and obvious retractions In ∪(∆n)]

I ′n In, I
′
n given by collapsing the complementary part onto ∆n. Using this, we may define

In ∪(∆n)] I
′
n \X ×T Y \ \Z

which is an n-simplex of Z ′′.
Choosing a section of r, we may compose these maps to define µvop, which is then easily checked

to also preserve the indicated markings. For example, µvop on edges is given by

x11

x00 x01,

y01 y11

y00


7→



µ(x11, y11)

µ(x00, y01) µ(x01, y11)

µ(x00, y00) α!µ(x00, y00)


7→


µ(x11, y11)

µ(x00, y00) α!µ(x00, y00)



where α!µ(x00, y00) is a choice of pushforward for the edge α in T that the diagrams are vertically
over.

5.19. Lemma. Let C T be a cartesian fibration and let D T be a cocartesian fibration. There

exists a T -equivalence ψ : F̃un(C, T )vop F̃unT (Cvop, Dvop).

Proof. We have a map µ : F̃unT (C,D)×T C D adjoint to the identity. Employing Cnstr. 5.18 on
µ and then adjointing, we obtain our desired T -functor ψ. A chase of the definitions then shows that
for all objects t ∈ T , ψt is homotopic to the known equivalence Fun(Ct, Tt)

op ' Fun(Cop
t , Dop

t ). �

5.20. Lemma. Let K and L be S-categories. Then there exists a S-equivalence

ψ : (K ?S L)vop '−→ Lvop ?S K
vop

over S ×∆1.

Proof. Note that (S×∆1)vop ∼= S×(∆1)op. View (K?SL)vop as lying over S×∆1 via the isomorphism
(∆1)op ∼= ∆1. Since (K ?S L)vop

0
∼= Lvop and (K ?S L)vop

1
∼= Kvop, we have our S-functor ψ as adjoint
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to the identity over S × ∂∆1. Fiberwise, ψs is homotopic to the known isomorphism (Ks ? Ls)
op ∼=

Lop
s ? Kop

s , so ψ is an equivalence. �

5.21. Proposition. Suppose S-categories K and C.

(1) The adjoint of the vertical opposite of the evaluation map induces a equivalence

FunS(K,C)vop '−→ FunS(Kvop, Cvop).

(2) Suppose a S-functor p : K C. We have equivalences

(C(p,S)/)vop ' (Cvop)/(p
vop,S), (C/(p,S))vop ' (Cvop)(pvop,S)/.

Proof. (1): Recall from 6.3.1 the equivalence FunS(K,C) ' π∗π
′∗{K,C}S . By Lm. 5.19 and Lm.

5.16(1), {K,C}vop
S ' {Kvop, Cvop}S . By Lm. 5.16(1) and (2), π∗π

′∗{K,C}vop
S ' (π∗π

′∗{K,C}S)vop.
Combining these equivalences supplies an equivalence FunS(K,C)vop ' FunS(Kvop, Cvop). It is
straightforward but tedious to verify that the adjoint of the vertical opposite of the evaluation map
FunS(K,C)vop ×S Kvop Cvop is homotopic to this equivalence.

(2): Combine (1), Lm. 5.20, Prp. 5.15 (which shows in particular that (−)vop is right Quillen),
and the definition of the S-slice category. �

5.22. Corollary. Let p : S ?S K C be a S-functor. Then p is a S-limit diagram if and only if
pvop : Kvop ?S S Cvop is a S-colimit diagram.

This allows us to deduce statements about S-limits from statements about S-colimits, and vice-
versa. For this reason, we will primarily concentrate our attention on proving statements concerning
S-colimits (and eventually, S-left Kan extensions), leaving the formulation of the dual results to the
reader.

6. Assembling S-slice categories from ordinary slice categories

Suppose a S-functor p : K C. For every morphism α : s → t in S, we have a functor
pα : Ks Ct, and we may consider the collection of ‘absolute’ slice categories Cpα/ and examine the
functoriality that they satisfy. For this, we have the following basic observation: given a morphism
f : t→ t′, covariant functoriality of slice categories in the target yields a functor Cpα/ Cpfα/, and
given a morphism g : s′ → s, contravariant functoriality in the source yields a functor Cpα/ Cpαg/.

Elaborating, we will show in this section that there exists a functor F : Õ(S) Cat∞ out of the

twisted arrow category Õ(S) such that F (α) ' Cpα/, which encodes all of this functoriality. Moreover,

the right Kan extension of F along the target functor Õ(S) S is C(p,S)/. We will end with some
applications of this result to the theory of cofinality and presentability.

We first record a cofinality result which implies that the values of a right Kan extension along

ev1 : Õ(S) S are computed as ends.

6.1. Lemma. The functor Õ(Ss/) Õ(S)×S Ss/ is initial.

Proof. Let (α : u t, β : s t) be an object of Õ(S)×S Ss/. We will prove that

C = Õ(Ss/)×Õ(S)×SSs/ (Õ(S)×S Ss/)/(α,β)

is weakly contractible. An object of C is the data of an edge

s

x y

f g

h

in Ss/, which we will abbreviate as f h g, and an edge x y

u t

h

γδ
α

,
s y

t

g

β
γ


in Õ(S)×S Ss/, which we will abbreviate as (h, g)

(δ,γ)
(α, β).
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Let C0 ⊂ C be the full subcategory on objects c = ((f h g), (h, g)
(δ,γ)

(α, β)) such that γ is a
degenerate edge in Ss/. We will first show that C0 is a reflective subcategory of C by verifying the

first condition of [9, 5.2.7.8]. Given an object c of C, define c′ to be ((f γh β), (γh, β)
(δ,idt)(α, β))

and let e : c c′ be the edge given by f g

f β

h

γidf
γh

,
(h, g) (γh, β)

(α, β)

(idx,γ)

(δ,γ)) (δ,idt))

 .

We need to show that for all d = ((f ′ h′ β), (h′, β)
(δ′,id)

(α, β)) ∈ C0, MapC(c′, d) e∗ MapC(c, d) is
a homotopy equivalence. The space MapC(c, d) lies in a commutative diagram

MapC(c, d) MapÕ(Ss/)(f
h g, f ′ h′ β)

Map(Õ(S)×SSs/)/(α,β)
((h, g), (h′, β)) MapÕ(S)×SSs/((h, g), (h′, β))

∆0 MapÕ(S)×SSs/((h, g), (α, β))

(δ′,id)∗

(δ,γ)

where the two squares are homotopy pullback squares. We also have the analogous diagram for
MapC(c′, d), and the map e∗ is induced by a natural transformation of these diagrams. The assertion
then reduces to checking that the upper square in the diagram

MapÕ(Ss/)(f
γh β, f ′ h′ β) MapÕ(Ss/)(f

h g, f ′ h′ β)

MapÕ(S)×SSs/((γh, β), (α, β)) MapÕ(S)×SSs/((h, g), (α, β))

MapSs/(β, β) MapSs/(g, β)

(idf ,γ)∗

(idx,γ))∗

γ∗

is a homotopy pullback square. Since (idx, γ) and (idf , γ) are ev1-cocartesian edges in Õ(S) and

Õ(Ss/) respectively, the lower and outer squares are homotopy pullback squares (where we implicitly
use that the map (δ′, id) covers the identity in Ss/ to identify the long vertical maps with those induced
by ev1), and the claim is proven.

To complete the proof, we will show that c = (β = β, (idt, β)
(α,idt)(α, β)) is an initial object in C0.

Let d ∈ C0 be as above. In the diagram

∆0 MapÕ(Ss/)(β = β, f ′ h′ β)

∆0 MapÕ(S)×SSs/((idt, β), (α, β)) MapÕ(S)(idt, α)

∆0 MapSs/(β, β) MapS(t, t)

(h′,idβ)

(α,idt)

idβ

we need to show that the upper square is a homotopy pullback square in order to prove that

MapC(c, d) ' ∗. The fiber of Õ(S) over t ∈ S is equivalent to (S/t)
op; in particular, idt is an

initial object in the fiber over t. Therefore, the two outer squares are both homotopy pullbacks. Since
the lower right square is a homotopy pullback, this shows that all squares in the diagram are homotopy
pullbacks, as desired. �
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Suppose K a S-category. Let Jn be the poset with objects ij for 0 ≤ i ≤ j ≤ 2n + 1 which has
a unique morphism ij kl if and only if k ≤ i ≤ j ≤ l. Let In ⊂ Jn be the full subcategory on

objects ij such that i ≤ n. In view of the isomorphisms Jn ∼= Õ(∆2n+1) ∼= Õ((∆n)op ? ∆n), the In
and Jn extend to functors I• ⊂ J• ∼= Õ((∆•)op ? ∆•) : ∆ sSet. Viewing In and Jn as marked
simplicial sets where ij kl is marked just in case k = i, we moreover have functors to sSet+.
Define the simplicial set X : ∆op Set to be HomsSet+(I•, \K) ×Hom(I•,S) Hom((∆•)op ? ∆•, S)
where I• ⊂ J• (∆•)op ? ∆• is given by the target map. An n-simplex of X is thus the data of a
diagram

knn kn(n+1) . . . kn(2n+1)

. .
. ...

... . . .
...

k11 . . . k1n k1(n+1) . . . k1(2n+1)

k00 k01 . . . k0n k0(n+1) . . . k0(2n+1)

where the horizontal edges are cocartesian in K and the vertical edges lie over degeneracies in S.
Declare an edge e in X to be marked if the corresponding map I1 \K sends all edges to marked

edges. We have a commutative square of marked simplicial sets

X (K∨)
\

Õ(S)] (Sop)]

where the map X K∨ is defined by restricting In K to I ′n K where I ′n is the full subcategory
of In on ij with j ≤ n. Let ψ denote the resulting map from X to the pullback.

6.2. Lemma. ψ : X Õ(S)] ×(Sop)] (K∨)
\

is a trivial fibration of marked simplicial sets.

Proof. Since any lift of a marked edge in Õ(S)]×(Sop)] (K∨)
\

to an edge in X is marked, it suffices to
prove that the underlying map of simplicial sets is a trivial fibration.

We first show that I ′n ⊂ In is left marked anodyne. Let In,k ⊂ In be the full subcategory on objects
ij with i ≤ k and similarly for I ′n,k. For 0 ≤ k < n we have a pushout decomposition

((∆n−k)op)[ × (∆k)]
⋃

((∆n−k−1)op)[×(∆k)]
((∆n−k−1)op)[ × (∆n+k+1)] I ′n,n−k

⋃
I′n,n−k−1

In,n−k−1

((∆n−k)op)[ × (∆n+k+1)] In,n−k,

and the lefthand map is left marked anodyne by [9, 3.1.2.3]. It thus suffices to show that I ′n,0
∼=

(∆n)] In,0 ∼= (∆2n+1)] is left marked anodyne, and this is clear.
We now explain how to solve the lifting problem

∂∆n X

∆n Õ(S)×Sop K∨.

To supply the dotted arrow we must provide a lift in the commutative square

∂In ∪∂I′n I
′
n \K

In S].

f
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where ∂In = ∪
[n−1]⊂[n]

In−1 as a simplicial subset of In and likewise for ∂I ′n. Then since I ′n ∂In∪∂I′n
I ′n and I ′n In are left marked anodyne, f is a cocartesian equivalence in sSet+

/S , and the lift

exists. �

For all s ∈ S, we have trivial cofibrations is : Ks
' (K∨)s, and thus commutative squares

Ks K∨

Õ(S) Sop.

ids

From this we obtain a cofibration ι :
⊔
s∈S Ks Õ(S) ×Sop K∨. We have an explicit lift ι′ of ι to

X, where Ks X is given by precomposition by In ∆n, ij 7→ n− i.
By Lm. 6.2, there exists a lift σ in the commutative square⊔

s∈S Ks X

Õ(S)×Sop K∨ Õ(S)×Sop K∨.

ι′

ι ψ

=

σ

Let χ : X K be the functor induced by ∆n In, i 7→ (n − i)(n + i). Define the twisted

pushforward P̃ : Õ(S)×Sop K∨ K to be the map over S given by the composite χ ◦ σ. Then for

every object α : s t in Õ(S), P̃α ◦ is : Ks Kt is a choice of pushforward functor over α, which
is chosen to be the identity if α = ids.

6.3. Proposition. For all A ∈ sSet/S,

idA ×S P̃ : A] ×S (Õ(S)] ×(Sop)] (K∨)
\
) A] ×S \K

is a cocartesian equivalence in sSet+
/A.

Proof. Let (Z,E) denote the marked simplicial set Õ(S)] ×(Sop)] (K∨)
\
. Viewing Z as Õ(S) ×Sop×S

(K∨ × S), we see that Z S is a cocartesian fibration with the cocartesian edges a subset of E.
Moreover, every edge in E factors as a cocartesian edge followed by an edge in E in the fiber over S.

By Prp. 13.4, it suffices to verify that for all s ∈ S, P̃s is a cocartesian equivalence in sSet+. Since

ids is an initial object in Õ(S) ×S {s}, the inclusion of the fiber (K∨)∼s ⊂ (Zs, Es) is a cocartesian

equivalence in sSet+ by [9, 3.3.4.1]. We chose P̃ so as to split the inclusion of Ks in Z, so this
completes the proof. �

Consider the commutative diagram

O(S)] ×S \K

O(S)] ×S Õ(S)] ×Sop (K∨)
\ Õ(S)] ×Sop (K∨)

\
(K∨)

\ × S] S]

O(S)] ×S Õ(S)] Õ(S)] (Sop)] × S]

S].

idO(S)×SP̃

prS

q∨×id

π′

π

ev

Since K∨ Sop is a cartesian fibration, by Thm. 2.23 (q∨ × id)∗ is right Quillen, and we saw in

Exm. 2.25 that π∗ is right Quillen. Therefore, given a S-category C, we obtain a Õ(S)-category

{K,C}S = (ev∗ ◦(q∨ × id)∗ ◦ pr∗S)(\C),
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and the map idO(S) ×S P̃ induces a S-functor

(6.3.1) θ : FunS(K,C) π∗π
′∗{K,C}S ,

natural in K and C. By Prp. 6.3 applied to A = Ss/ for all s ∈ S, θ is an equivalence.

6.4. Remark. As a corollary, the global sections of {K,C}S are equivalent to FunS(K,C). If we
knew that under the straightening functor St, {K,C}S was equivalent to the composite

Õ(S) Sop × S StS(K)op×StS(C)−−−−−−−−−−−→ Catop
∞ ×Cat∞

Fun−−→ Cat∞,

then this would yield another proof of the end formula for the∞-category of natural transformations,
as proven in [6, §6]. As we manage to always stay within the environment of cocartesian fibrations,
this identification is not necessary for our purposes.

6.5. Definition. Given a S-functor p : K C and a choice of twisted pushforward P̃ for K, define

the cocartesian section ωp : Õ(S) {K,C}S to be the adjoint to

p ◦ P̃ : Õ(S)] ×Sop K∨
\

\K \C.

For objects α : s→ t in Õ(S), ωp(α) ∈ Fun((K∨)s, Ct) is the functor

pt ◦ P̃α : (K∨)s Kt Ct.

Define the twisted slice category C p̃/S to be Õ(S)×{K,C}S {K ?S S,C}S (we omit the dependence

on P̃ from the notation). The fiber of Õ(S)×{K,C}S {K?S S,C}S over an object α : s t is Cpt◦P̃α/.

We now connect the constructions C p̃/S and Cp/S . A check of the definitions reveals that θ ◦ σp =
π∗π

′∗(ωp) for the canonical cocartesian section σp : S FunS(K,C). We thus have a morphism of
spans

S FunS(K,C) FunS(K ?S S,C)

S π∗π
′∗{K,C}S π∗π

′∗{K ?S S,C}S

σp

= ' '

π∗π
′∗(ωp)

with all objects fibrant and the right horizontal maps fibrations by a standard argument. Taking
pullbacks, we deduce:

6.6. Theorem. We have an equivalence

π∗π
′∗(C p̃/S) ' Cp/S .

In other words, the right Kan extension of C p̃/S along the target functor ev1 : Õ(S) S is equivalent
to Cp/S.

Proof. Our interpretation of this equivalence is by Exm. 2.25. �

Relative cofinality. Let us now apply Thm. 6.6. We have the S-analogue of the basic cofinality
result [9, 4.1.1.8].

6.7. Theorem. Let f : K L be a S-functor. The following conditions are equivalent:

(1) For every object s ∈ S, fs : Ks Ls is final.
(2) For every S-functor p : L C, the functor f∗ : Cp/S Cpf/S is an equivalence.
(3) For every S-colimit diagram p : L ?S S C, p ◦ f� : K ?S S C is a S-colimit diagram.

Proof. (1) ⇒ (2): Factoring f as the composition of a cofibration and a trivial fibration, we may
suppose that f is a cofibration, in which case we may choose compatible twisted pushforward functors

P̃K and P̃L. Let p : L C be a S-functor. Precomposition by f yields a Õ(S)-functor f̃∗ :



PARAMETRIZED HIGHER CATEGORY THEORY 43

C p̃/L C p̃f/K . Passing to the fiber over an object α : s t, the compatibility of P̃K and P̃L
implies that the diagram

(K∨)s Kt

(L∨)s Lt Ct

(P̃K)α

(f∨)s ft
(pf)t

(P̃L)α pt

commutes and that

(f̃∗)α = (f∨)∗s : Cpt◦(P̃L)α/ C(pf)t◦(P̃K)α/.

By [9][4.1.1.10], (f∨)s is final, so by [9][4.1.1.8], (f∨)∗s is an equivalence. Consequently, f̃∗ is an
equivalence. Now by Thm. 6.6, f∗ is an equivalence.

(2) ⇒ (3): Immediate from the definition.
(3)⇒ (1): Let s ∈ S be any object and ps : L�

s Top a colimit diagram. Let p : (L?SS)s Top
be a left Kan extension of ps along the full and faithful inclusion L�

s ⊂ (L?SS)s. By transitivity of left
Kan extensions, p is a left Kan extension of its restriction to Ls. By Prp. 5.4, under the equivalence

Fun(L,Top) ' FunS(L,Top
S

), p is a Ss/-colimit diagram. By assumption, p ◦ (f�)s is a Ss/-colimit
diagram. By Prp. 5.4 again, ps ◦ fs is a colimit diagram, as desired. �

6.8. Definition. Let f : K L be a S-functor. We say that f is S-final if it satisfies the equivalent
conditions of Thm. 6.7. We say that f is S-initial if fvop is S-final.

6.9. Example. Let F : C D :G be a S-adjunction. Then F is S-initial and G is S-final.

6.10. Remark. Any S-functor which is fiberwise a weak homotopy equivalence is a weak homotopy
equivalence, by [9, 4.1.2.15], [9, 4.1.2.18], and [9, 3.1.5.7]. In particular, any S-final or S-initial
S-functor is a weak homotopy equivalence. However, in general a S-final S-functor is not final.

A remark on presentability. Suppose the functor S Cat∞ classifying the cocartesian fibration
C S factors through PrR, i.e. C S is a right presentable fibration. For any X a presentable
∞-category and diagram f : A X, Xf/ is again presentable and the forgetful functor Xf/ X

creates limits and filtered colimits. Therefore, the twisted slice category C (̃p,S)/ is a right presentable
fibration. Since the forgetful functor Cat∞ PrR creates limits, by Thm. 6.6 we deduce that
C(p,S)/ is a right presentable fibration. In particular, in every fiber there exists an initial object.
However, these initial objects may fail to be preserved by the pushforward functors. In fact, even if
we assume that C S is both left and right presentable, C may fail to be S-cocomplete.

Another cocartesian fibration over Õ(S). The construction of the slice category C (̃p,S)/ is in some
respects unsatisfactory, because it relies upon an inexplicit choice of twisted pushforward functor. In
this subsection, we provide a more explicit construction of an equivalent cocartesian fibration over

Õ(S).

6.11. Definition. Let K and C be S-categories and let p : K C be a S-functor. Define the

simplicial set C
p̃/S

over Õ(S) by declaring, for a map ∆n Õ(S) and corresponding map (σ, τ) :

∆n ?∆n S,

Hom/Õ(S)(∆
n, C

p̃/S
) = HomK|σ//S(K|σ ?∆n, C)

where the set on the right hand side equals the set of dotted arrows making the diagram

K|σ

K|σ ?∆n C

∆n ?∆n S

p|σ

(σ, τ)
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commute. Endow C
p̃/S

with a marking by declaring an edge to be marked just in case the corre-

sponding map K|∆1 ?∆1 C sends ∆1 to a cocartesian edge in C.

Observe that we have a forgetful functor C
p̃/S

C covering the target functor Õ(S) S, given

by restricting maps K|∆n ?∆n C to the copy of ∆n.

6.12. Proposition. π : C
p̃/S

Õ(S) is fibrant in sSet+

/Õ(S)
.

Proof. We first prove that π is a cocartesian fibration. Let 0 ≤ k < n. We have to solve the lifting
problem

Λnk C
p̃/S

∆n Õ(S).

with the proviso that if k = 0, the edge ∆{0,1} is sent to a marked edge in C
p̃/S

. Let A ⊂ ∆n ? ∆n

be the simplicial subset spanned by the faces σ0 ? σ1 : ∆n0 ?∆n1 ∆n ?∆n such that there exists

l 6= k, 0 ≤ l ≤ n with n− l /∈ σ0 and l /∈ σ1. Then maps Λnk Õ(S) are specified by maps A S.
Moreover, we have a factorization of the inclusion as a composite of inclusions

A
α−→ Λnn−k ? Λnk

β−→ ∆n ∪Λnn−k
Λnn−k ? Λnk ∪Λnk

∆n γ−→ ∆n ?∆n.

We may thus reformulate our lifting problem as supplying a dotted arrow so as to make the diagram

K|Λnn−k K|Λnn−k K|∆n K|∆n

A×∆n?∆n (K|∆n ?∆n) K|Λnn−k ? Λnk K|∆n ∪
K|Λn

n−k

K|Λnn−k ? Λnk ∪
Λnk

∆n K|∆n ?∆n C

A Λnn−k ? Λnk ∆n ∪
Λnn−k

Λnn−k ? Λnk ∪
Λnk

∆n ∆n ?∆n S

= =

p|∆n

α β γ

commute. To proceed, we make the following observations about the maps α, β, and γ.

I α is inner anodyne: We can slightly modify the proof of [11, 5.2.1.3] to show this. Observe
that a face σ = σ0 ? σ1 : ∆n0 ? ∆n1 ⊂ Λnn−k ? Λnk does not belong to A just in case the

set of vertices {i : n − i ∈ σ0 or i ∈ σ1} contains {0, ..., k̂, ..., n}. Partition the collection
I of faces in Λnn−k ? Λnk not in A into primary and secondary faces, where σ is primary if
{0, ..., n− k− 1} 6⊂ σ0 and secondary otherwise. If σ is primary and k /∈ σ1, let σ′ be the face
obtained from σ by adding k to σ1, and if σ is secondary and n − k /∈ σ0, let σ′ be the face
obtained from σ by adding n − k to σ0. Note that σ′ is then still in I, and moreover that
σ 7→ σ′ pairs faces in I uniquely. The rest of the proof is now as in [11, 5.2.1.3].

I If 0 < k < n, then β is visibly inner anodyne. Otherwise, viewing the edge ∆{0,1} in the
second copy of ∆n as marked, β is the composite of a right anodyne map and a left marked
anodyne map.

I γ is inner anodyne: By [9, 2.1.2.3] applied to the right anodyne map Λnn−k ∆n and
∅ Λnk , the map

∆n ∪Λnn−k
Λnn−k ? Λnk ∆n ? Λnk

is inner anodyne, hence so is the pushout

∆n ∪Λnn−k
Λnn−k ? Λnk ∪Λnk

∆n ∆n ? Λnk ∪Λnk
∆n.

Now by [9, 2.1.2.3] applied to ∅ ∆n and the left anodyne map Λnk ∆n, the map

∆n ? Λnk ∪Λnk
∆n ∆n ?∆n

is inner anodyne. Composing these two maps gives the map in question, so we conclude.
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To apply these results to our situation in which K S and K|∆n ?∆n ∆n?∆n are cocartesian
fibrations (the latter by Prp. 4.7), recall that inner anodyne maps pull back along cocartesian fibrations
to trivial cofibrations in sSetJoyal. Thus if 0 < k < n, we see that

i : K|∆n ∪K|Λn
n−k

(A×∆n?∆n (K|∆n ?∆n)) K|∆n ?∆n

is a trivial cofibration in sSetJoyal, so the dotted map exists in that case. Now suppose k = 0 and

consider i as a map of marked simplicial sets with ∆{0,1} in the second copy of ∆n marked and the
cocartesian edges in K marked. We want to show that i is a trivial cofibration in sSet+

/S . Recall that

if A B over S is a trivial cofibration in sSetJoyal, then A[ B[ is a trivial cofibration in sSet+
/S

([9, 3.1.5.3]), hence A B with any common marking is also a trivial cofibration in sSet+
/S . Thus,

since α and γ are inner anodyne, we are reduced to showing that

K|∆n ∪K|Λnn K|Λnn ? \Λ
n
0 K|∆n ∪K|Λnn K|Λnn ? \Λ

n
0 ∪\Λn0 \∆

n

is left marked anodyne, which it is, being obtained by pushout from \Λ
n
0 \∆

n.
We have shown not only that π is a cocartesian fibration, but also that every marked edge in C

p̃/S

is π-cocartesian and that we may choose our π-cocartesian lifts to be marked edges. To complete the
proof, we must verify that every π-cocartesian edge is marked, for which it suffices to show that every
equivalence in C

p̃/S
is marked. But this is true by definition, since the forgetful functor C

p̃/S
C

preserves equivalences. �

We now identify the fibers of C
p̃/S

as ordinary slice ∞-categories. Let α : s t be an edge in S.

Choose a lift h in

Ks × {0} \C|α

Ks × (∆1)] (∆1)]

p|s

h

and let φ = h|Ks×{1} : Ks Ct.

6.13. Lemma. There is a categorical equivalence (C
p̃/S

)α ' (Ct)φ/.

Proof. If Ks = ∅ then both ∞-categories are isomorphic to Ct and the claim is proved, so suppose
not. Consider Ks as a marked simplicial set with the equivalences marked. Define a functor

F ′1 : ∆ sSet+
Ks//∆1

by

F ′1(n) = (Ks Ks tKs×(∆n)] (Ks × (∆n)]) ? (∆n)[ ∆1)

and let F1 be the unique colimit-preserving extension of F ′1 to sSetJoyal. Define a second colimit-
preserving functor

F2 : sSetJoyal sSet+
Ks//∆1

by

F2(A) = (Ks Ks ? A
[ ∆1).

Let G1 and G2 be their right adjoints. Then by definition G1(Ks
p|s−−→ \C|α ∆1) ∼= (C

p̃/S
)α; define

(C|α)′p|s/ = G2(Ks
p|s−−→ \C|α ∆1).

Observe that F2 is left Quillen and that F1 preserves cofibrations. Using the commutativity of the
square

Ks × (∆n)] (Ks × (∆n)]) ? (∆n)[

Ks Ks ? (∆n)[,
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define a natural transformation θ : F1 F2, and let ψ : (C|α)′p|s/ (C
p̃/S

)α be the adjoint map.

We first prove that θA is a cocartesian equivalence for all A, which will imply that F1 is left Quillen and
ψ is a categorical equivalence by [7, 1.4.4(b)]. In view of left properness and the stability of cocartesian
equivalences under filtered colimits, it suffices to show that θ∆n is a cocartesian equivalence for all
n ≥ −1. If n = −1, the result is obvious, so suppose n ≥ 0. Then, since ∆{0} ⊂ (∆n)] is left
marked anodyne, (∆n)] ∆0 is a cocartesian equivalence in sSet+

/T for all ∞-categories T and

maps ∆0 T , so by left properness, [9, 3.1.4.2], and Lm. 4.10, θ∆n is a cocartesian equivalence.
Next, we examine the restriction functor

ρ : (C|α)h/ (C|α)′p|s/

induced by the inclusion i : Ks × {0} Ks × (∆1)]. We claim that ρ is a trivial fibration. To show
this, for every cofibration A0 A we must solve the lifting problem

(Ks × Λ1
0) ? A[ ∪

(Ks×Λ1
0)?A[0

(Ks × (∆1)]) ? A[0 \C|α

(Ks × (∆1)]) ? A[ (∆1)],

where the bottom map is defined by

(Ks ×∆1) ? A ∆1 ?∆0 ∼= ∆2 s1−→ ∆1.

The left vertical map is left marked anodyne by Lm. 4.10, so the dotted arrow exists. Finally, since
the inclusion j : Ks × {1} Ks ×∆1 is right anodyne, by [9, 2.1.2.5] the restriction functor

(C|α)h/ (Ct)φ/

is a trivial fibration. Chaining together these equivalences completes the proof. �

We defer the full comparison between C
p̃/S

and C p̃/S to a future work.

7. Types of S-fibrations

In this section we introduce some additional classes of fibrations which are all defined relative to
S.

7.1. Definition. A S-functor φ : C D is a S-fibration if it is a categorical fibration. A S-fibration
φ is an S-cocartesian resp. S-cartesian fibration if for every object s ∈ S, φs : Cs Ds is a
cocartesian resp. cartesian fibration, and for every ∆1 ×∆1 C

xs xt

ys yt

h

f g

k

with h and k φ-cocartesian edges over φ(h) = φ(k), if f is a φs-cocartesian resp. φs-cartesian edge
then g is a φt-cocartesian resp. φt-cartesian edge.

Equivalently, φ : C D is D-(co)cartesian if it is a categorical fibration, fiberwise (co)cartesian,
and for every edge in S, the cocartesian pushforward along that edge preserves (co)cartesian edges in
the fibers. (We formulate our definition as above so as to avoid having to make any ‘straightening’
constructions such as choosing pushforward functors.)

7.2. Remark. φ : C D is a S-fibration if and only if φ : \C \D is a marked fibration.

7.3. Remark. In view of [9, 2.4.2.11], [9, 2.4.2.7], and [9, 2.4.2.8], φ : C D is an S-cocartesian
fibration if and only if φ is a cocartesian fibration. However, there is no corresponding simplification
of the definition of an S-cartesian fibration.

7.4. Lemma. Let φ : C D be a S-cartesian fibration and let f : x y be a φs-cartesian edge in
Cs. Then f is a φ-cartesian edge.
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Proof. The property of being φ-cartesian may be checked after base-change to the 2-simplices of D.
Consequently, we may suppose that S = ∆1 and s = {1}. We have to verify that for every object
w ∈ C we have a homotopy pullback square

MapC(w, x) MapC(w, y)

MapD(φw, φx) MapD(φw, φy).

f∗

φ∗ φ∗
φ(f)∗

If w ∈ C0, for any choice of cocartesian edge w w′ over 0 1, the square is equivalent to

MapC1
(w′, x) MapC1

(w′, y)

MapD1
(φw′, φx) MapD1

(φw′, φy).

f∗

φ∗ φ∗
φ(f)∗

Hence we may suppose that w ∈ C1, in which case the square is a homotopy pullback square since
f is a φ1-cartesian edge. �

Recall (Ntn. 4.29) the fiberwise arrow S-category OS(D). Fix φ : C D a S-functor.

7.5. Definition. The free S-cocartesian and free S-cartesian fibrations on φ are the S-functors

Frcocart(φ) = ev1 ◦ pr2 : C ×D OS(D) D,

Frcart(φ) = ev0 ◦pr2 : OS(D)×D C D

.

7.6. Proposition. Frcocart(φ) is a S-cocartesian fibration. Dually, Frcart(φ) is a S-cartesian fibration.

Proof. We prove the second assertion, the proof of the first being similar but easier. First note
that OS(D) ×D C is a subcategory of O(D) ×D C stable under equivalences. Therefore, since ev0 :
O(D) ×D C D is a cartesian fibration, Frcart(φ) is a categorical fibration. Moreover, for every
object s ∈ S, Frcart(φ)s : O(Ds) ×Ds Cs is the free cartesian fibration on φs : Cs Ds. It remains
to show that for every square

(a→ φx, x) (b→ φy, y)

(a′ → φx′, x′) (b′ → φy′, y′)

h

f g

k

in OS(D)×D C with the horizontal edges cocartesian over S and the left vertical edge Frcart(φ)s-
cartesian, the right vertical edge is Frcart(φ)t-cartesian. This amounts to verifying that y → y′ is an
equivalence in Ct. The above square yields a square

x y

x′ y′

h

f g

k

in C with x→ x′ an equivalence and the horizontal edges cocartesian over S, from which the claim
follows. �

Define S-functors ι0 : C C ×D OS(D) and ι1 : C OS(D)×D C via the commutative square

C OS(D)

C D

= evi

φ

where the upper horizontal map is the composite C OS(C) OS(D).



48 JAY SHAH

7.7. Proposition. ι0 is left S-adjoint to prC . Dually, ι1 is right S-adjoint to prC .

Proof. We prove the first assertion, the proof of the second being similar. To prove that we have a
relative S-adjunction ι0 a prC , we must prove that for each s ∈ S we have an adjunction (ι0)s a (prC)s.
So suppose that S = ∆0. Since prC ◦ι0 = id, it suffices by [9, 5.2.2.8] to check that the identity is a
unit transformation: that is, for every x ∈ C and (y, φy → a) ∈ C ×D O(D),

prC : MapC×DO(D)((x, idφx), (y, φy → a)) MapC(x, y)

is an equivalence. Under the fiber product decomposition

MapC×DO(D)((x, idφx), (y, φy → a)) ' MapC(x, y)×MapD(φx,φy) MapO(D)((idφx), (φy → b))

the map prC is projection onto the first factor. The adjunction ι : D O(D) :ev0 obtained by
exponentiating the adjunction i0 : {0} ∆1 :p implies that

MapO(D)((idφx), (φy → b)) MapD(φx, φy)

is an equivalence, so the claim follows. �

We conclude this section with an observation about the interaction between S-joins and S-cocartesian
fibrations which will be used in the sequel.

7.8. Lemma. Let C, C ′, and D be S-categories and let φ, φ′ : C,C ′ D be S-functors. If φ and φ′

are S-(co)cartesian, then φ ? φ′ : C ?D C ′ D is S-(co)cartesian.

Proof. This is an easy corollary of Prp. 4.7. �

7.9. Definition. We say that a S-functor F : C D×S E is a S-bifibration if for all objects s ∈ S,
Fs is a bifibration. Observe it is then automatic that prD F is S-cartesian and prE F : C E is
S-cocartesian.

7.10. Example. The S-functor

FunS(K ?S L,C) FunS(K,C)×S FunS(L,C)

is a S-bifibration by Lm. 4.8. In particular, for a S-functor p : K C, the S-functors C(p,S)/ C
and C/(p,S) C are S-cocartesian resp. S-cartesian.

8. Relative adjunctions

In [11, 7.3.2], Lurie introduces the notion of a relative adjunction.

8.1. Definition. Let C and D be S-categories. We call a relative adjunction F : C D :G (with
respect to S) a S-adjunction if F and G are S-functors.

We prove some basic results about S-adjunctions in this section. Let us first reformulate the
definition of a relative adjunction in terms of a correspondence. Let F : C D be a S-functor. By
the relative nerve construction, F defines a cocartesian fibration M ∆1 by prescribing, for every
∆n ∼= ∆n0 ?∆n1 ∆1, the set Hom∆1(∆n,M) to be the collection of commutative squares

∆n0 C

∆n D

F

for n1 ≥ 0, and setting Hom∆1(∆n,M) = Hom(∆n, C) for n1 = −1. Moreover, the structure maps
for C and D to S define a functor M S by sending ∆n M to ∆n D S if n1 ≥ 0, and
∆n C S if n1 < 0. Then M is a S-category, M S ×∆1 is a S-cocartesian fibration, and
F admits a right S-adjoint if and only if M S ×∆1 is a S-cartesian fibration.

8.2. Proposition. Let F : C D :G be a S-adjunction and let I be a S-category. Then we have
adjunctions

F∗ : FunS(I, C) FunS(I,D) :G∗

G∗ : FunS(C, I) FunS(D, I) :F ∗
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Proof. Let M S×∆1 be the S-functor obtained from F . We first produce the adjunction F∗ a G∗.
Invoking Thm. 2.23 on the span

(∆1)
π←− \I × (∆1)]

π′−→ S] × (∆1)]

we deduce that π∗π
′∗ : sSet+

/(S]×(∆1)])
sSet+

/(∆1)]
is right Quillen. Let N = π∗π

′∗(M). Then

N ∆1 is a cocartesian fibration classified by the functor

F∗ : FunS(I, C) FunS(I,D).

Now invoking Thm. 2.23 on the span

((∆1)])op ρ←− (I∼ × (∆1)])op ρ′−→ (S∼ × (∆1)])op

we deduce that with respect to the cartesian model structures ρ∗ρ
′∗ : sSet+

/(S∼×(∆1)])
sSet+

/(∆1)]

is right Quillen. Let N ′ = ρ∗ρ
′∗M . Since G is right S-adjoint to F , N ′ ∆1 is a cartesian fibration

classified by the functor

G∗ : Fun/S(I,D) Fun/S(I, C)

where we view I, C,D as categorical fibrations over S. N is a subcategory of N ′, and the cartesian
edges e in N ′ with d0(e) ∈ N are in N . Hence N ∆1 is also a cartesian fibration classified by the
functor

G∗ : FunS(I,D) FunS(I, C).

We now produce the adjunction G∗ a F ∗ by similar methods. Let E0 be the collection of edges
e : x y in M such that e admits a factorization as a cocartesian edge over S followed by a
cartesian edge in the fiber. Note that since M S×∆1 is a S-cartesian fibration, E0 is closed under
composition of edges. Invoking Thm. 2.23 on the span

(∆1)]
µ←− (M,E0)

µ′−→ S] × (∆1)]

we deduce that µ∗µ
′∗ : sSet+

/(S]×(∆1)])
sSet+

/(∆1)]
is right Quillen. Let P = µ∗µ

′∗(\I × (∆1)]).

Then P ∆1 is a cocartesian fibration classified by the functor

G∗ : FunS(C, I) FunS(D, I).

Let E1 be the collection of edges e : x y in M such that e is a cocartesian edge over an
equivalence in S. Now invoking Thm. 2.23 on the span

((∆1)])op ν←− (M,E1)op ν′−→ (S∼ × (∆1)])op

we deduce that with respect to the cartesian model structures ν∗ν
′∗ : sSet+

/(S∼×(∆1)])
sSet+

/(∆1)]

is right Quillen. Let P ′ = ν∗ν
′∗(I∼×(∆1)]). P ′ ∆1 is a cartesian fibration with P as a subcategory.

One may check that P ∆1 inherits the property of being a cartesian fibration, which is classified
by the functor F ∗ : FunS(D, I) FunS(C, I). �

8.3. Corollary. Let F : C D :G be a S-adjunction and let I be a S-category. Then we have
S-adjunctions

F∗ : FunS(I, C) FunS(I,D) :G∗

G∗ : FunS(C, I) FunS(D, I) :F ∗

Proof. By Prp. 8.2, for every s ∈ S

F∗ : FunSs/(I ×S Ss/, C ×S Ss/) FunSs/(I ×S Ss/, D ×S Ss/) :G∗

is an adjunction, and similarly for the contravariant case. �

To state the next corollary, it is convenient to introduce a definition.
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8.4. Definition. Suppose π : C D a S-fibration. Define the ∞-category SectD/S(π) of S-sections
of π to be the pullback

SectD/S(π) FunS(D,C)

∆0 FunS(D,D).

π∗

idD

Define the S-category SectD/S(C) to be the pullback

SectD/S(π) FunS(D,C)

S FunS(D,D).

π∗

σidD

We will often denote SectD/S(π) by SectD/S(C), the S-functor π being left implicit.

Note that for any object s ∈ S, the fiber SectD/S(C)s is isomorphic to SectDs/s(πs).

8.5. Corollary. Let p : C E and q : D E be S-fibrations. Let F : C D :G be an
adjunction relative to E where F and G are S-functors. Then for any S-category I,

F∗ : FunS(I, C) FunS(I,D) :G∗

is an adjunction relative to FunS(I, E). In particular, taking I = E and the fiber over the identity,
we deduce that

F∗ : SectE/S(p) SectE/S(q) :G∗

is an adjunction, and also that

F∗ : SectE/S(p) SectE/S(q) :G∗

is a S-adjunction.

Proof. The proof of Prp. 8.2 shows that the unit for the adjunction F∗ a G∗ is sent by p∗ to a natural
transformation through equivalences. �

8.6. Lemma. Let F : C D :G be a S-adjunction. For every S-functor p : K D, we have a
homotopy pullback square in sSet+

/S

C/(Gp,S) D/(p,S)

C D

evC0 evD0

F

where the upper horizontal map is defined to be the composite C/(Gp,S) F−→ C/(FGp,S) ε(p)!−−−→ D/(p,S).
Dually, for every S-functor p : K D, we have a homotopy pullback square in sSet+

/S

D(Fp,S))/ C(p,S)/

D C.

evD1 evC1

G

where the upper horizontal map is defined to be the composite D(Fp,S))/ G−→ C(GFp,S)/ η(p)∗−−−→ C(p,S)/.

Proof. We prove the first assertion; the second then follows by taking vertical opposites. We first
explain how to define the map ε(p)!. Choose a counit transformation ε : D × ∆1 D for F a
G such that πD ◦ ε is the identity natural transformation from πD to itself. Then ε ◦ (p × id) is
adjoint to a S-functor ε(p) : S × ∆1 FunS(K,D) with ε(p)0 = σFGp and ε(p)0 = σp. Because
FunS(S?SK,D) D×SFunS(K,D) is an S-bifibration, from ε(p) we obtain a pushforward S-functor
ε(p)! : D/(FGp,S) D/(p,S) compatible with the source maps to D.
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We need to check that for every object s ∈ S, passage to the fiber over s yields a homotopy

pullback square of ∞-categories. Because (D/(p,S))s ∼= (D
/(ps,s)
s )s, we may replace S by Ss/ and

thereby suppose that s is an initial object in S.
Let r : {s} ? S S be a left Kan extension of the identity S S. By the formula for a left

Kan extension, r(s) is an initial object in S, which without loss of generality we may suppose to be s.
Using r ◦ (id?πK) as the structure map for {s}?K over S, define φ′ : {s}? \K {s}?S \K as adjoint

to the identity over S × ∂∆1. It is easy to show that φ′ is a trivial cofibration in sSet+
/S . Moreover,

since the inclusion {s} S] is a trivial cofibration, {s} ?S \K S] ?S \K is a trivial cofibration

in sSet+
/S by Thm. 4.16. Let φ be the composition of these two maps. Then because FunS(−,−) is

a right Quillen bifunctor, φ∗ : FunS(S] ?S \K, \D) FunS({s} ? \K, \D) is a trivial Kan fibration.
We further claim that the inclusion j : FunS({s} ? \K, \D) Ds ×D Fun({s} ? K,D) ×Fun(K,D)

FunS(\K, \D) is an equivalence. Indeed, we have the pullback square

FunS({s} ? \K, \D) Ds ×D Fun({s} ? K,D)×Fun(K,D) FunS(\K, \D)

∆0 {s} ×S Fun({s} ? K, S)×Fun(K,S) {πK}
r◦(id?πK)

and the term in the lower right is contractible since it is equivalent to the full subcategory Fun′({s} ?
K, S) ⊂ Fun({s} ? K, S) of functors which are left Kan extensions of πK .

Now taking the pullback of the composition j ◦ φ∗ over {p}, we obtain an equivalence

(D/(p,S))s Ds ×D D/p.

Similarly, we have an equivalence

(C/(Gp,S))s Cs ×C C/Gp.
Since F a G is in particular an adjunction, by [9, 5.2.5.5] C/Gp C ×D D/p is an equivalence.
Taking the fiber over s, we deduce the claim. �

8.7. Corollary. Let F : C D :G be a S-adjunction. Then F preserves S-colimits and G preserves
S-limits.

Proof. Let p : K?SS C be a S-colimit diagram. To show that Fp is a S-colimit diagram, it suffices
to prove that the restriction map D(Fp,S)/ D(Fp,S)/ is an equivalence. We have the commutative
square

D(Fp,S)/ C(p,S)/ ×C D

D(Fp,S)/ C(p,S)/ ×C D
(here we suppress some details about the naturality of ε(−)!). The righthand vertical map is an
equivalence by assumption, and the horizontal maps are equivalences by Lm. 8.6. Thus the lefthand
vertical map is an equivalence. �

9. Parametrized colimits

In this section, we first introduce a parametrized generalization of Lurie’s pairing construction [9,
3.2.2.13]. We then employ it to study D-parametrized S-(co)limits. This material recovers and extends
[9, §4.2.2] (in view of Lm. 4.5). It is a precursor to our study of Kan extensions.

An S-pairing construction.

9.1. Construction. Let p : C S, q : D S be S-categories and let φ : C D be a S-functor.
Let π, π′ : Ococart(D)×DC D be given by π = ev0 ◦ pr1, π′ = ev1 ◦ pr1. Let E denote the collection
of edges e in Ococart(D)×ev1,D,φC such that π(e) is q-cocartesian and pr2(e) is p-cocartesian (so π′(e)
is q-cocartesian). Then the span

\D
π←− (Ococart(D)×D C,E )

π′−→ \D
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defines a functor

π∗π
′∗ : sSet+

/\D
sSet+

/\D
.

For a S-category E and a S-functor ψ : E D, define

(F̃unD/S(C,E) \D) = π∗π
′∗(\E \D).

9.2. Lemma. Let q : D S be a S-category.

(1) ev0 : Ococart(D) D is a cartesian fibration, and an edge e in Ococart(D) is ev0-cartesian
if and only (evS,1 ◦q)(e) is an equivalence in S. In particular, if ev0(e) is q-cocartesian, then
e is ev0-cartesian if and only if ev1(e) is an equivalence in D.

(2) If f : x y is an edge in D such that q(f) is an equivalence, then there exists a ev0-
cocartesian edge e over f . Moreover, an edge e over f is ev0-cocartesian if and only if it is
ev0-cartesian.

Proof. ev0 : Ococart(D) D factors as

Ococart(D) D ×S O(S) D

where the first functor is a trivial fibration and the second is a cartesian fibration, as the pullback
of evS,0 : O(S) S. Thus ev0 is a cartesian fibration with cartesian edges as indicated. Moreover,
since evS,0 : O(S) S is a categorical fibration, the second claim follows from [11, B.2.9]. �

We have designed our construction so that for any object x ∈ D and cocartesian section Sqx/ D,

the fiber of F̃unD/S(C,E) D over x is equivalent to FunSqx/(C×DSqx/, E×DSqx/). For this reason,

we think of F̃unD/S(−,−) as the parametrized generalization of the pairing construction F̃unD(−,−),

to which it reduces when S = ∆0.

9.3. Theorem. Notation as in 9.1, F̃unD/S(C,E) enjoys the following functoriality:

(1) If φ is either a S-cartesian fibration or a S-cocartesian fibration and ψ is a categorical fibration,

then F̃unD/S(C,E) S is a S-category with cocartesian edges marked as indicated in 9.1,

and F̃unD/S(C,E) D is a categorical fibration.

(2) If φ is a S-cartesian fibration and ψ is a S-cocartesian fibration, then F̃unD/S(C,E) D is
a S-cocartesian fibration.

(3) If φ is a S-cocartesian fibration and ψ is a S-cartesian fibration, then F̃unD/S(C,E) D is
a S-cartesian fibration.

Proof. (1) It suffices to check that Thm. 2.23 applies to the span

\D
π←− (Ococart(D)×D C,E )

π′−→ \D.

In the remainder of this proof we will verify that Ococart(D)×DC D is a flat categorical
fibration. For condition (4) we appeal to Lm. 9.2. The rest of the conditions are easy
verifications.

(2) By Lm. 9.2 and 7.4, π : Ococart(D) ×D C D is a cartesian fibration (hence flat) with an
edge e π-cartesian if and only if pr1(e) is ev0-cartesian and pr2(e) is φ-cartesian. Let E ′ be
the collection of edges e in Ococart(D)×ev1,DC such that for any π-cartesian lift e′ of π(e), the
induced edge d1(e) d1(e′) is in E . Note that since φ is S-cartesian (and not just fiberwise
cartesian), E ′ is closed under composition. Invoking Thm. 2.23 on the span

D] π←− (Ococart(D)×D C,E ′)
π′−→ D]

we deduce that π∗π
′∗ : sSet+

/D sSet+
/D is right Quillen. Note that there is no conflict

of notation with the functor π∗π
′∗ : sSet+

/\D
sSet+

/\D
defined before since E ⊂ E ′ and the

two restrict to the same collections of marked edges in the fibers of π. Since S-cocartesian
fibrations are cocartesian fibrations over D (Rm. 7.3), we conclude.
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(3) First note that π factors as a cocartesian fibration followed by a cartesian fibration, so is flat.
Let F be the collection of edges f in D such that q(f) is an equivalence. By Lm. 9.2, we
have that π : Ococart(D) ×ev1,D C D admits cocartesian lifts of edges in F . Let E ′′ be
the collection of those π-cocartesian edges. Invoking Thm. 2.23 on the span

(D,F )op ρ←− (Ococart(D)×D C,E ′′)op ρ′−→ (D,F )op

we deduce that with respect to the cartesian model structures ρ∗ρ
′∗ : sSet+

/(D,F) sSet+
/(D,F)

is right Quillen. We have that F̃unD/S(C,E) is a full subcategory of ρ∗ρ
′∗(ψ). More-

over, the compatibility condition in the definition of a S-cartesian fibration ensures that

F̃unD/S(C,E) D inherits the property of being fibrant in sSet+
/(D,F). Another routine

verification shows that F̃unD/S(C,E) D is indeed S-cartesian.
�

9.4. Lemma. Let C C ′ be a monomorphism between S-cartesian or S-cocartesian fibrations over
D and let E D be a S-fibration. Then the induced functor

F̃unD/S(C ′, E) F̃unD/S(C,E)

is a categorical fibration.

Proof. Given a trivial cofibration A B in sSetJoyal, we need to solve the lifting problem

A F̃unD/S(C ′, E)

B F̃unD/S(C,E).

This diagram transposes to

A×D Ococart(D)×D C ′
⋃

A×DOcocart(D)×DC
B ×D Ococart(D)×D C E

B ×D Ococart(D)×D C ′ D.

By the proof of Thm. 9.3, Ococart(D) ×D C D is a flat categorical fibration. Therefore, by [11,
B.4.5] the left vertical arrow is a trivial cofibration in sSetJoyal. �

For later use, we analyze some degenerate instances of the S-pairing construction.

9.5. Lemma. There is a natural equivalence F̃unD/S(D,E)
'−→ E of S-categories over D.

Proof. The map is induced by the identity section ιD : D Ococart(D) fitting into a morphism of
spans

\D

\D (Ococart(D),E ) \D.

= =
ιD

By Lm. 3.2(1’), ιD is a cocartesian equivalence in sSet+
/S via the target map. Since the cocartesian

model structure on sSet+
/\D

is created by the forgetful functor to sSet+
/S , the assertion follows. �

9.6. Lemma. Let C ′ D′ be a cartesian fibration of ∞-categories and let E′ be a S-category. For
all s ∈ S, there is a natural equivalence

F̃unD′×S/S(C ′ × S,D′ × E′)s
'−→ F̃unD′(C

′, D′ × E′s)

of cartesian fibrations over D′.
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Proof. The lefthand side is defined using the span

(D′)] × {s} ((D′)] × {s})×D′×S (Ococart(D′ × S)×D′ C ′,E ′) S]

with E ′ as in the proof of Thm. 9.3. Cocartesian edges (over S) in D′ × S are precisely those edges
which become equivalences when projected to D′, so Ococart(D′ × S) ∼= Fun((∆1)], (D′)∼) × O(S),
and the identity section ιD′ : D′ Fun((∆1)], (D′)∼) is a categorical equivalence. Therefore, the
map

(D′ × Ss/)] ((D′)] × {s})×D′×S (Ococart(D′ × S),E )

induced by ιD′ is a cocartesian equivalence in sSet+
/S . Since C ′×S D′×S is a cartesian fibration,

it follows that

(C ′)
\ × (Ss/)] ((D′)] × {s})×D′×S (Ococart(D′ × S)×D′ C ′,E ′)

is also a cocartesian equivalence in sSet+
/S . Finally, using the inclusion C ′ × {s} C ′ × Ss/, we

obtain a morphism from the span

(D′)] (C ′)
\ {s} ⊂ S]

through a cocartesian equivalence in sSet+
/S . This yields the equivalence of the lemma. �

Directly from the definition, we have that for an object x ∈ D, the fiber F̃unD/S(C,E)x is isomor-

phic to Funx(Cx, Ex). We now proceed to identify the S-fiber F̃unD/S(C,E)x.

9.7. Proposition. There is a x-functor

ε∗ : F̃unD/S(C,E)x Funx(Cx, Ex)

which is a cocartesian equivalence in sSet+
/x.

Proof. We first define the x-functor ε∗. The data of maps of marked simplicial sets

A \F̃unD/S(C,E)x

A \Funx(Cx, (E ×S D)x)

over x is identical to the data of maps

A×x x] ×D (Ococart(D),E )×D \C \E

A×x O(x)] ×ev1 ◦ ev1,D \C \E

over \D (where E is the collection of edges e in Ococart(D) such that ev0(e) and ev1(e) are cocarte-
sian). We have a commutative square

O(x)] x]

(Ococart(D),E ) \D

ev0

O(ev1) ev1

ev0

which defines the functor ε : O(x) x×D Ococart(D), and this in turn induces the functor ε∗. To
show that ε∗ is a cocartesian equivalence, it will suffice to show that ε is a trivial fibration, for then a
choice of section σ and homotopy σ ◦ ε ' id will furnish a strong homotopy inverse to ε∗ in the sense
of [9, 3.1.3.5]. Since we have a pullback diagram

O(x) D ×Fun(∆1,D) Fun(∆1 ×∆1, D)

x×D Ococart(D) Fun(Λ2
1, D)

ε ε′
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it will further suffice to show that ε′ is a trivial Kan fibration. ε′ factors as the composition

D ×Fun(∆1,D) Fun(∆1 ×∆1, D)
ε′′−→ Fun(∆2, D)

ε′′′−−→ Fun(Λ2
1, D).

where ε′′ is defined by precomposing by the inclusion i : ∆2 ∆1×∆1 which avoids the degenerate
edge for objects in D ×Fun(∆1,D) Fun(∆1 ×∆1, D), and ε′′′ is precomposition by Λ2

1 ∆2. ε′′′ is a

trivial fibration since Λ2
1 ∆2 is inner anodyne. To argue that ε′′ is a trivial fibration, first note that

ε′′ inherits the property of being a categorical fibration from i∗ : Fun(∆1 ×∆1, D) Fun(∆2, D).
Define an inverse σ′′ by precomposing by the unique retraction r : ∆1 × ∆1 ∆2 chosen so that
r◦i = id. Then σ′′ is a section of ε′′ and one can write down an explicit homotopy through equivalences
of the identity functor on D ×Fun(∆1,D) Fun(∆1 ×∆1, D) to σ′′ ◦ ε′′, so ε′′ is a trivial fibration. �

D-parametrized slice. We now study another slice construction defined using the S-pairing con-
struction.

9.8. Construction. Let φ : C D be a S-cocartesian fibration and let F : C E be a S-functor
over D. Then F defines a cocartesian section

τF : D F̃unD/S(C,E)

as adjoint to the functor Ococart(D)×ev1,D C C
F−→ E. Define

E(φ,F )/S = D ×
F̃unD/S(C,E)

F̃unD/S(C ?D D,E)

and let π(φ,F ) denote the projection E(φ,F )/S D.

Given an object x ∈ D, the functor τF : D F̃unD/S(C,E) induces via pullback a x-functor

τFx : x F̃unD/S(C,E)x.

We also have the x-functor

σFx : x Funx(Cx, Ex)

adjoint to

O(x)×x Cx
pr2−−→ Cx

Fx−−→ Ex.

An inspection of the definition of the comparison functor ε∗ of 9.7 shows that the triangle

x F̃unD/S(C,E)x

Funx(Cx, Ex)

τFx

σFx
ε∗

commutes. Recalling the definitions

(E(φ,F )/S)x = x×
F̃unD/S(C,E)x

F̃unD/S(C ?D D,E)x

(Ex)Fx/x = x×Funx(Cx,Ex) Funx(Cx ?x x,Ex)

we therefore obtain a comparison x-functor

ψ : (E(φ,F )/S)x (Ex)Fx/x.

9.9. Corollary. The functor ψ is a cocartesian equivalence in sSet+
/x.

Proof. By [9, 3.3.1.5], we have to verify that ψ induces a categorical equivalence on the fibers. But
after passage to the fiber over an object e = [x y] in x, by Lm. 4.8 ψe is a functor between two
pullback squares in which one leg is a cartesian fibration. Therefore, by Prp. 9.7 and [9, 3.3.1.4], ψe
is a categorical equivalence. �

9.10. Proposition. π(φ,F ) : E(φ,F )/S D is a S-cartesian fibration.
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Proof. By Lm. 9.4, π(φ,F ) is a categorical fibration. By Thm. 9.3, Lm. 9.4, and Lm. 4.8, the functor

(ι∗C)s : F̃unD/S(C ?D D,E)s F̃unD/S(C,E)s

over Ds satisfies the hypotheses of [9, 2.4.2.11], hence is a locally cartesian fibration. To then show
that (ι∗C)s is a cartesian fibration, it suffices to check that for every square[

G : Cx ?x x Ex
] [

G′ : Cy ?y y Ey

]
[
H : Cx ?x x Ex

] [
H ′ : Cy ?y y Ey

]
in F̃unD/S(C?DD,E)s lying over an edge e : x y in Ds, if the horizontal edges are cartesian lifts

over e and the right vertical edge is (ι∗C)s,y-cartesian, then the left vertical edge is (ι∗C)s,x-cartesian.
In other words, if we let e! : Cx ?x x Cy ?y y and e∗ : Ey Ex denote choices of pushforward and

pullback functors, then we want to show that given G ' e∗ ◦G′ ◦ e!, H ' e∗ ◦H ′ ◦ e!, and G′|y ' H ′|y,

we have that G|x ' H|x; this is clear. We deduce that (π(φ,F ))s, being pulled back from (ι∗C)s, is a
cartesian fibration. For the final verification, let us abbreviate objects

(x ∈ D,
[
G : Cx ?x x Ex

]
: G|Cx = Fx) ∈ E(φ,F )/S

as
[
G : Cx ?x x Ex

]
, the restriction to Cx equaling Fx being left implicit. We must check that

given a square

x x′

y y′

α̃x

e e′

α̃y

in D lying over α : s t with the vertical edges in the fiber and the horizontal edges cocartesian
lifts of α, and given a lift of that square to a square[

G : Cx ?x x Ex
] [

G′ : Cx′ ?x′ x
′ Ex′

]
[
H : Cy ?y y Ey

] [
H ′ : Cy′ ?y′ y

′ Ey′
]

in E(φ,F )/S with the horizontal edges cocartesian lifts of α and the left vertical edge (π(φ,F ))s-
cartesian, then the right vertical edge is (π(φ,F ))t-cartesian. We will once more translate this com-
patibility statement into a more obvious looking one so as to conclude. Let e!, e

∗, e′!, e
′∗ be defined as

above. Let α∗ : x′ x, α∗ : y′ y be choices of pullback functors (e.g. the first sends a cocartesian
edge f : x′ z to f ◦ α̃x : x z), and also label related functors by α∗. Then the cocartesianness of
the horizontal edges amounts to the equivalences G′ ' G ◦α∗ and H ′ ' H ◦α∗, and the cartesianness
of the left vertical edge amounts to the equivalence G|x ' (e∗ ◦H ◦ e!)|x. Our desired assertion now
is implied by the homotopy commutativity of the diagram

x′ x Ex

y′ y Ey

α∗

e′! e!

G|x

α∗ H|y
e∗

(the content being in the commutativity of the first square), for this demonstrates that G′|x′ '
(e′∗ ◦H ′ ◦ e′!)|x′ . �

9.11. Lemma. Let p : W S, q : D S be S-categories and let π : W D be a S-fibration
such that for every object s ∈ S, πs is a cartesian fibration.

(1) Suppose that:
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(a) For every object x ∈ D, there exists an initial object in Wx.
(b) For every p-cocartesian edge w → w′ in W , if w is an initial object in Wπ(w), then w′ is

an initial object in Wπ(w′).
Let W ′ ⊂ W be the full simplicial subset of W spanned by those objects w ∈ W which are
initial in Wπ(w) and let π′ = π|W ′ . Then W ′ is a full S-subcategory of W and π′ is a trivial
fibration.

(2) Let σ : D W be a S-functor which is a section of π. Then σ is a left adjoint of π relative
to D if and only if, for every object x ∈ D, σ(x) is an initial object of Wx.

Proof. (1) Condition (b) ensures that W ′ is a S-subcategory of W . By [9, 2.4.4.9], for every
object s ∈ S, π′s is a trivial fibration. In particular, π′ is S-cocartesian fibration (the com-
patibility condition being vacuous since all edges in W ′s are π′s-cocartesian). By Rm. 7.3, π′

is a cocartesian fibration. As a cocartesian fibration with contractible fibers, π′ is a trivial
fibration.

(2) Since relative adjunctions are stable under base change, if σ is a left adjoint of π relative to
D, passage to the fiber over x ∈ D shows that σ(x) is an initial object of Wx. Conversely, if
for all x ∈ D, σ(x) is an initial object of Wx, then by [9, 5.2.4.3], σs is left adjoint to πs for
all s ∈ S. Since σ is already given as a S-functor, this implies that σ is S-left adjoint to π;
in particular, σ is left adjoint to π. The existence of σ implies the hypotheses of (1), so σ is
fully faithful. Now by the definition [11, 7.3.2.1], σ is left adjoint to π relative to D.

�

We now connect the construction F̃unD/S(−,−) with FunS(−,−). To this end, consider the com-
mutative diagram

O(S)] ×S \C

O(S)] ×S (Ococart(D)×D C,E ) (Ococart(D)×D C,E ) S]

O(S)] ×S \D \D

S],

i

prD

ev0

where the map i is induced by the identity section D Ococart(D).

9.12. Lemma. i is a homotopy equivalence in sSet+
/S (considered over S via p : C S).

Proof. Define a map h′ : O(S)×S Ococart(D) Fun(∆1,O(S)×S Ococart(D)) to be the product of
the following three maps:

(1) Choose a lift σ

Fun(∆{0,1}, S) Fun(∆2, S)

Fun(Λ2
1, S) Fun(Λ2

1, S)

s1

∼

=

σ

and let ∆1×∆1 ∆2 be the unique map so that the induced map Fun(∆2, S) Fun(∆1×
∆1, S) ∼= Fun(∆1,O(S)) sends (s t u) to [s t] [s u]. Use these two maps
to define

O(S)×S Ococart(D)×D C O(S)×S O(S) ∼= Fun(Λ2
1, S) Fun(∆1,O(S)).
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(2) Use the unique map ∆1 × ∆1 ∆1 which sends (0, 0) to 0 and all other vertices to 1 to
define

O(S)×S Ococart(D)×D C Ococart(D) Fun(∆1,Ococart(D)).

(3) The degeneracy map s0 : C Fun(∆1, C) defines

O(S)×S Ococart(D)×D C C Fun(∆1, C).

Then h′ is adjoint to a map of marked simplicial sets over S

h : (∆1)] × O(S)] ×S (Ococart(D)×D C,E ) O(S)] ×S (Ococart(D)×D C,E )

such that h0 = id and h1 factors as a composition

O(S)] ×S (Ococart(D)×D C,E )
r−→ O(S)] ×S \C

i−→ O(S)] ×S (Ococart(D)×D C,E )

where r is defined by

O(S)] ×S (Ococart(D)×D C,E ) Fun(Λ2
1, S)] ×S \C

d1◦σ−−−→ O(S)] ×S \C.

Our choice of σ ensures that r ◦ i = id, completing the proof. �

Note that for any S-fibration π : X D, the S-category SectD/S(π) defined in 8.4 may be

identified with (ev0)∗(prD)∗(\X
π

\D). Combining Lm. 9.12, Lm. 2.26, and Lm. 2.27, we see that
if E is a S-category and C D is S-cocartesian or S-cartesian, then the map induced by i

i∗ : SectD/S(F̃unD/S(C,E ×S D)) FunS(C,E)

is a equivalence of S-categories. Moreover, a chase of the definitions reveals that for every S-functor
F : C E, we have an identification

i∗ ◦ SectD/S(τF×φ) = σF : S FunS(C,E).

We thus have a morphism of spans

S SectD/S(F̃unD/S(C,E ×S D)) SectD/S(F̃unD/S(C ?D D,E ×S D))

S FunS(C,E) FunS(C ?D D,E).

SectD/S(τF×φ)

= ' '

σF

The right horizontal maps are S-fibrations by Lm. 9.4 and [2, 9.11(2)], so taking pullbacks yields
an equivalence

(9.12.1) SectD/S((E ×S D)(φ,F×φ)/S) ' S ×σF ,FunS(C,E) FunS(C ?D D,E).

We are now prepared to introduce the main definition of this section.

9.13. Definition. Let φ : C D be a S-cocartesian fibration. A S-functor F : C ?D D E is a
D-parametrized S-colimit diagram if for every object x ∈ D, the x-functor F |Cx?xx : Cx ?x x Es
is a s-colimit diagram.

9.14. Proposition. Let φ : C D be a S-cocartesian fibration, let F : C E be a S-functor, and
let F : C ?D D E be a D-parametrized S-colimit diagram extending F . Then the section

idS × σF : S S ×σF ,FunS(C,E) FunS(C ?D D,E)

is a S-initial object.

Proof. Combine Eqn. 9.12.1, Lm. 9.11(2), and Cor. 8.5. �

We have the following existence and uniqueness result for D-parametrized S-colimits.

9.15. Theorem. Let φ : C D be a S-cocartesian fibration and let F : C E be a S-functor.
Suppose that for every object x ∈ D, the s-functor F |Cx : Cx Es admits a s-colimit. Then

there exists a D-parametrized S-colimit diagram F : C ?D D E extending F . Moreover, the full
subcategory of {F} ×FunS(C,E) FunS(C ?D D,E) spanned by the D-parametrized S-colimit diagrams
coincides with that spanned by the initial objects.
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Proof. By Prp. 9.10 and Cor. 9.9, the functor

π(φ,F×φ) : (E ×S D)(φ,F×φ)/S D

is a S-cartesian fibration with x-fibers equivalent to (Es)
(F |Cx ,s)/. Our hypothesis ensures that the

conditions of Lm. 9.11(1) are satisfied, so π(φ,F×φ) admits a section σ which is a S-functor that selects

an initial object in each fiber. The resulting S-functor D F̃unD/S(C ?DD,E×SD) covering τF×φ
is adjoint to a S-functor F : C?DD E extending F , which is a D-parametrized S-colimit diagram.
Having proven existence, the second statement now follows from Prp. 9.14. �

Thm. 9.15 also admits the following ‘global’ consequence.

9.16. Corollary. Suppose that E is S-cocomplete. Then U : FunS(C ?DD,E) FunS(C,E) admits
a left S-adjoint L which is a section of U such that for every object F : Cs Es, L(F ) is a

Ds-parametrized Ss/-colimit diagram.

Proof. The assumption that E is S-cocomplete implies that Es is s-cocomplete for all s ∈ S. By
Thm. 9.15 and the stability of parametrized colimit diagrams under base change, the conditions of
Lm. 9.11(1) are satisfied. Thus U admits a section L which selects an initial object in each fiber,
necessarily a parametrized colimit diagram. By Lm. 9.11(2), L is a left adjoint of U relative to
FunS(C,E); in particular, L is S-left adjoint to U . �

Application: Functor categories.

9.17. Proposition. Let K, I, and C be S-categories.

(1) Suppose that for all s ∈ S, Cs admits all Ks-indexed colimits. p : K ?S S FunS(I, C) is a
S-colimit diagram if and only if, for every object x ∈ I over s,

Ks ?s s
ps−→ Funs(Is, Cs)

evx−−→ Cs

is a Ss/-colimit diagram.
(2) A S-functor p : K FunS(I, C) admits an extension to a S-colimit diagram p if for all

x ∈ I, evx ◦ps admits an extension to a Ss/-colimit diagram.

Proof. We prove (1), the proof for (2) being similar. Let p′ : (K ×S I) ?I I ∼= (K ?S S)×S I C be
a choice of adjoint of p under the equivalence FunS(K ?S S,FunS(I, C)) ' FunS((K ?S S) ×S I, C).
By Thm. 9.15 applied to the S-cocartesian fibration K ×S I I and the hypothesis on C, there
exists an I-parametrized S-colimit diagram p′′ extending p′ = p′|K×SI . By Prp. 9.14, p′′ defines an
S-initial object in

S ×FunS(K×SI,C) FunS((K ×S I) ?I I, C) ' FunS(I, C)(p,S)/

so its adjoint is a S-colimit diagram. For the ‘if’ direction, supposing that p is a S-colimit diagram,
then by the uniqueness of S-initial objects, p′′ is equivalent to p′. Then evx ◦ps is equivalent to p′′x,

which is a Ss/-colimit diagram by definition of I-parametrized S-colimit diagram. For the ‘only if’
direction, supposing that all the evx ps are Ss/-colimit diagrams, we get that p′ is a I-parametrized

S-colimit diagram, so is equivalent to p′′. �

9.18. Corollary. Suppose C is S-cocomplete and I is a S-category. Then FunS(I, C) is S-cocomplete.

10. Kan extensions

We now combine the theory of S-colimits parametrized by a base S-category D and that of free
S-cocartesian fibrations to establish the theory of left S-Kan extensions.

10.1. Definition. Suppose a diagram of S-categories

C E

D

F

φ
G

η
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where by the ‘2-cell’ η we mean exactly the datum of a S-functor η : C ×∆1 E restricting to F
on 0 and G ◦ φ on 1. Let

G′ : (C ×D OS(D)) ?D D πD D G E,

let

θ : (C ×D OS(D))×∆1 E

be the natural transformation adjoint to G∗ : C ×D OS(D) OS(E), let

η′ : (C ×D OS(D))×∆1 C ×∆1 η E

be the natural transformation obtained from η, and let θ′ = θ ◦ η′ be a choice of composition in
FunS(C ×D OS(D), E). Let

r : FunS((C ×D OS(D)) ?D D,E) FunS(C ×D OS(D), E)

denote the restriction functor. By Lm. 4.8, we may select a r-cartesian edge e in FunS((C ×D
OS(D)) ?D D,E) with d0(e) = G′ covering θ′, chosen so that e|D is degenerate. Let G′′ = d1(e).

We say that G is a left S-Kan extension of F along φ if G′′ is a D-parametrized S-colimit diagram.

10.2. Remark. The following are equivalent:

(1) G is a left S-Kan extension of F along φ.
(2) For all s ∈ S, Gs is a left Ss/-Kan extension of Fs along φs.

(3) For all s ∈ S and x ∈ Ds, G|x : x Es is a left Ss/-Kan extension of F |Cx : Cx Es
along φx : Cx x.

In other words, our notion of S-Kan extension generalizes the concept of pointwise Kan extensions.

We can bootstrap Thm. 9.15 to prove existence and uniqueness of left S-Kan extensions.

10.3. Theorem. Let φ : C D and F : C E be S-functors. Suppose that for every object
x ∈ D, the Ss/-functor

C ×D D/x Cs
Fs Es

admits a Ss/-colimit. Then there exists a left S-Kan extension G : D E of F along φ, uniquely
specified up to contractible choice.

Proof. We spell out the details of existence and leave the proof of uniqueness to the reader. By Thm.
9.15, there exists a D-parametrized S-colimit diagram

F : (C ×D OS(D)) ?D D E

extending C ×D OS(D) C F E. Let G = F |D. Define a map

h : C ×∆1 (C ×D OS(D)) ?D D

over D ×∆1 as adjoint to (C
(id,ιφ)

C ×D OS(D), C φ D) and let η = F ◦ h, so that η is a natural
transformation from F to G ◦ φ.

We claim that η exhibits G as a left Kan extension of F along φ. To show this, we will exhibit
a r-cartesian edge e from F to G′ such that the restriction r(e) of e to C ×D OS(D) is a choice of
composition θ ◦ η′. Define

e′ : (C ×D OS(D)) ?D D ×∆1 (C ×D OS(D)) ?D D

over D × ∆1 as adjoint to (id, πD), and let e = F ◦ e′, so that e is an edge from F to G′. Since
(πD)|D = idD, e|D is a degenerate edge in FunS(D,E), so e is r-cartesian.

To finish the proof, we need to introduce a few more maps. Define

α = (prC , α
′) : C ×D OS(D)×∆1 C ×D OS(D)

where α′ is adjoint to

C ×D OS(D) OS(D) = F̃unS(S ×∆1, D) min∗ F̃unS(S ×∆1 ×∆1, D).

Here min : ∆1 ×∆1 ∆1 is the functor which takes the minimum. Define

β : C ×D OS(D)×∆1 OS(D)×∆1 ev D.
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Use α and β to define

γ : C ×D OS(D)×∆1 ×∆1 (C ×D OS(D)) ?D D

so that on objects (c, φc
f→ d), γ sends ∆1 ×∆1 to the square

(c, φc = φc) φc

(c, φc
f→ d) d.

(id,f) f

Then F ◦ γ defines a square

F ◦ prC G ◦ φ ◦ prC

F ◦ prC G′.

η′

= θ

r(e)

in FunS(C ×D OS(D), E), which proves that r(e) ' θ ◦ η′. �

We also have the Kan extension counterpart to Cor. 9.16.

10.4. Theorem. Let φ : C D be a S-functor and E a S-category. Suppose that E is S-cocomplete.
Then the S-functor

φ∗ : FunS(D,E) FunS(C,E)

given by restriction along φ admits a left S-adjoint φ! such that for every S-functor F : C E, the
unit map F φ∗φ!F exhibits φ!F as a left S-Kan extension of F along φ.

Proof. Factor φ as the composition

C ιC C ×D OS(D) i (C ×D OS(D)) ?D D πD D.

Then φ∗ factors as the composition

FunS(D,E)
π∗D FunS((C ×D OS(D)) ?D D,E) i∗ FunS(C ×D OS(D), E)

ι∗C FunS(C,E).

By Prp. 7.7 and Cor. 8.3, pr∗C is left S-adjoint to ι∗C . Since iD is right S-adjoint to πD, by Cor. 8.3
again i∗D is left S-adjoint to π∗D. By Thm. 9.15, i∗ admits a left S-adjoint L which extends functors
to D-parametrized S-colimit diagrams. Let φ! be the composite of these three functors. The proof of
Thm. 10.3 shows that φ!(F ) is as asserted. �

The next proposition permits us to eliminate the datum of the natural transformation η from the
definition of a left S-Kan extension when φ is fully faithful.

10.5. Proposition. Suppose φ : C D is the inclusion of a full S-subcategory. Then for any
left S-Kan extension G of F : C E along φ, η is a natural transformation through equivalences.
Consequently, G is homotopic to a functor F : D E which is both an extension of F and a left
S-Kan extension (with the natural transformation F F ◦ φ = F chosen to be the identity).

Proof. Let G′′ : (C ×D OS(D)) ?D D E be as in the definition of a left S-Kan extension. Because
D-parametrized S-colimit diagrams are stable under restriction to S-subcategories,

(G′′)C : (C ×D OS(D)×D C) ?C C E

is a C-parametrized S-colimit diagram. The additional assumption that C is a full S-subcategory has
the consequence that (C×DOS(D)×DC) ∼= OS(C). Also, for any object x ∈ C, the inclusion x-functor

ix : x C/x is x-final, using the first criterion of Thm. 6.7. Therefore, OS(C) ?C C
πC C F E is

a C-parametrized S-colimit diagram extending OS(C) ev0 C F E, so (G′′)C ' F ◦ πC .
The map h in the proof of Thm. 10.3 factors as

C ×∆1 h′ OS(C) ?C C (C ×D OS(D)) ?D D.
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We have the chain of equivalences

η ' G′′ ◦ h ' F ◦ πC ◦ h′ = F ◦ prC ,

proving the first assertion. For the second assertion, use that

(\D × {1}) ∪\C×{1} (\C × (∆1)]) \D × (∆1)]

is a cocartesian equivalence in sSet+
/S to extend (G, η) to a homotopy between G and an extension

F , which is then necessarily a left S-Kan extension. �

10.6. Corollary. Suppose φ : C D a fully faithful S-functor and E a S-cocomplete S-category.
Then the left S-adjoint φ! to the restriction S-functor φ∗ exists and is fully faithful.

Proof. Combine Thm. 10.4 and Prp. 10.5. �

As expected, S-colimit diagrams are examples of S-left Kan extensions.

10.7. Proposition. Suppose φ : C D a S-cocartesian fibration and F : C ?DD E a S-functor
extending F : C E. Then F is a D-parametrized S-colimit diagram if and only if F is a S-left
Kan extension of F .

Proof. We may check the assertion objectwise on D, so let x ∈ Ds. Consider the commutative diagram

Cx Cs

C ×C?DD (C ?D D)/x Es.

θ Fs

prC

The value of a D-parametrized colimit of F on x is computed as the Ss/-colimit of (Fs)|Cx , and that

of a S-left Kan extension of F as the Ss/-colimit of Fs ◦ prC . Therefore, it suffices to prove that θ is
x-final. Let f : x → y be an object in x, i.e. a cocartesian edge in D, which lies over s t. Then
θf is equivalent to the inclusion

Cy ∼= Cy ×(Cy)� ((Cy)�)/{∞} Ct ×Ct?DtDt (Ct ?Dt Dt)
/y.

Applying Lm. 10.8 to the map Ct Ct ?Dt Dt of cocartesian fibrations over Dt, we deduce that θf
is final. �

10.8. Lemma. Let X Y be a map of cocartesian fibrations over Z and let y ∈ Y be an object over

z ∈ S. Then the inclusion Xz ×Yz Y
/y
z X ×Y Y /y is final.

Proof. By the dual of [11, 3.4.1.10], X ×Y Y /y Z/z is a cocartesian fibration. We have a pullback
square

Xz ×Yz Y
/y
z X ×Y Y /y

{z} Z/z.
idz

Since the bottom horizontal map is final and cocartesian fibrations are smooth, the top horizontal
map is final. �

As with S-colimits, S-left Kan extensions reduce to the usual notion of left Kan extension when
taken in a S-category of objects.

10.9. Proposition. Suppose a diagram of S-categories

C ES

D ·

F

φ
G

η

The following are equivalent:
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(1) G is a left S-Kan extension of F along φ.
(2) G† is a left Kan extension of F † along φ.
(3) For all objects s ∈ S, G†|Ds is a left Kan extension of F †|Cs along φs.

Proof. We first prove that (1) and (2) are equivalent. Factor φ : C D through the free S-cocartesian
fibration on φ:

φ : C
ιC−→ C ×D OSD

Frcocart(φ)−−−−−−→ D.

Since ιC is S-left adjoint to prC , it is also left adjoint. Therefore, the S-left Kan extension resp. the
left Kan extension of F resp. F † along ιC is computed by F ◦ prC resp. F † ◦ prC . By transitivity of
Kan extensions, we thereby reduce to the case that φ is S-cocartesian. The claim now follows easily
by combining Prp. 5.4 and Prp. 10.7.

We next prove that (2) and (3) are equivalent. For this, it suffices to observe that for all objects

d ∈ D over some s ∈ S, Cs ×Ds D
/d
s C ×D D/d is final by Lm. 10.8 applied to C D. �

11. Yoneda lemma

By Prp. 5.4, Top
S

is S-cocomplete, so by Cor. 9.18, the S-category of presheaves PS(C) =

FunS(Cvop,Top
S

) is S-cocomplete. The S-Yoneda embedding j : C PS(C) was constructed in

[2, §10] via straightening the left fibration ÕS(C) Cvop ×S C. It was shown there that j is fully
faithful. In this section, we prove that PS(C) is the free S-cocompletion of C.

11.1. Lemma (S-Yoneda lemma). Let j : C PS(C) denote the S-Yoneda embedding. Then the
identity on PS(C) is a S-left Kan extension of j along itself.

Proof. By Prp. 9.17, it suffices to show that for every s ∈ S and object x ∈ Cs, evx : Ps(Cs) Top
s

is a Ss/-left Kan extension of evx js. To ease notation, let us replace Ss/ by S and suppose that s ∈ S
is an initial object.

We claim that (evx j)
† : C Top is homotopic to MapC(x,−). By definition of the S-Yoneda em-

bedding, (evx j)
† classifies the left fibration ev1 : ÕS(C)x→ C pulled back from ÕS(C) Cvop×S

C via the cocartesian section σ : S Cvop defined by σ(s) = x. By [9, 4.4.4.5], it suffices to show

that idx is an initial object in ÕS(C)x→. For this, because s ∈ S is an initial object we reduce to
checking that for all edges α : s → t, the pushforward of idx by α is an initial object in the fiber

(ÕS(C)x→)t. But this fiber is equivalent to Õ(Ct)α!x→ ' (Ct)
α!x/.

Applying Prp. 10.9, we reduce to showing that for all t ∈ S, (evx)†|PS(C)t is a left Kan extension of

(evx j)
†|Ct . Note that for y any cocartesian pushforward of x over the essentially unique edge s→ t,

we have both that (evx j)
†|Ct is homotopic to MapCt(y,−) and (evx)†|PS(C)t is homotopic to evy

(regarding y as an object in Cvop
t ). The inclusion Ct PS(C)t ' Fun(Cvop

t ,Top) factors through

P(Ct) with P(Ct) Fun(Cvop
t ,Top) left adjoint to precomposition by the inclusion i : Cop

t Cvop
t .

By the usual Yoneda lemma for ∞-categories, evy : P(Ct) Top is the left Kan extension of
MapCt(y,−). The left Kan extension of evy to PS(C)t is then given by precomposition by i, so is
again evy. �

To state the universal property of PS(C), we need to introduce a bit of terminology.

11.2. Definition. Let F : C D be a S-functor. We say that F strongly preserves S-(co)limits if
for all s ∈ S, Fs preserves Ss/-(co)limits.

11.3. Remark. If F strongly preserves S-colimits then F preserves S-colimits. However, the converse
is not necessarily true.

11.4. Notation. Suppose that C and D are S-cocomplete categories. Let FunLS(C,D) denote the full

subcategory of FunS(C,D) on the S-functors F which strongly preserve S-colimits. Let FunLS(C,D)

denote the full S-subcategory of FunS(C,D) with fibers FunLSs/(C,D) over s ∈ S.
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11.5. Theorem. Let E be a S-cocomplete category. Then restriction along the S-Yoneda embedding
defines equivalences

FunLS(PS(C), E)
'−→ FunS(C,E)

FunLS(PS(C), E)
'−→ FunS(C,E)

with the inverse given by S-left Kan extension.

We prepare for the proof of Thm. 11.5 with some necessary results concerning S-mapping spaces.
Recall that given an ∞-category C, we have a number of equivalent options for describing mapping
spaces in C. The relevant ones to consider for us are:

(1) Straightening the left fibration Õ(C) Cop × C, we obtain the mapping space functor
MapC(−,−) : Cop × C Top;

(2) Fixing an object x ∈ C, straightening the left fibration Cx/ C also yields the functor
MapC(x,−) : C Top;

(3) Fixing objects x, y ∈ C, we have that the space MapC(x, y) is given by {x} ×C O(C)×C {y}.
Likewise, given a S-category C, we have these possibilities:

(1) The functor Map
C

(−,−) : Cvop×SC Top given by the straightening of ÕS(C) Cvop×S
C;

(2) Fixing an object x ∈ C, the left fibration Cx/ = x×C OS(C) C;
(3) Fixing an object x ∈ C, the left fibration Cx/ C;
(4) Fixing objects x, y ∈ C, the left fibration x×C OS(C)×C y y, which when specializing to

the case that x and y are in the same fiber, yields Map
C

(x, y) as the fiber over {(x, y)}.
In the proof of Lm. 11.1, we showed that (1) and (3) were equivalent, and by Prp. 4.31, (2)

and (3) are equivalent. In keeping with our usual abuse of notation for mapping spaces, we will
interchangeably refer to any of these options when we write Map

C
(−,−).

Our next goal is to prove that Map
C

(−,−) preserves S-limits in the second variable, and dually,
takes S-colimits in the first variable to S-limits. For this, we need a few lemmas.

11.6. Lemma. Let F : X Y be a map of S-cocartesian or S-cartesian fibrations over an S-category
C. The following are equivalent:

(1) F is an equivalence.
(2) For all s ∈ S and Ss/-functors Z Cs, Fun/Cs(Z,Xs) Fun/Cs(Z, Ys) is an equivalence.

(3) For all s ∈ S and c ∈ Cs, Fun/Cs(c,Xs) Fun/Cs(c, Ys) is an equivalence.

(4) For all c ∈ C, Fc : Xc Yc is an equivalence.

If X and Y are S-left or S-right fibrations over C, then all instances of Fun can be replaced by Map.

Proof. (1) ⇒ (2): If F is an equivalence, so is Fs for all s ∈ S. The map in question is then induced
by a map of pullbacks through equivalences in which two matching legs are S-fibrations, so is an
equivalence. (2) ⇒ (3) is obvious. (3) ⇒ (4): Given c ∈ Cs, take fibers over {s} ∈ s and note that
Fun/Cs(c,Xs)s ' Fun/Cc({c}, Xs) ' Xc. (4) ⇒ (1): We must check that Fs is an equivalence for all

s ∈ S, for which it suffices to check fiberwise over Cs by the hypothesis. �

11.7. Lemma. Let q : S?SK Top
S

be a S-functor which extends q : K Top
S

. Let X S?S

K be a left fibration which is an unstraightening of q†, and let X = X ×S?SK K. Then q is a S-limit
diagram if and only if the restriction S-functor

R : Map
/S?SK

(S ?S K,X) Map
/S?SK

(K,X) ∼= Map
/K

(K,X)

is an equivalence.

Proof. In view of [9, 3.3.3.4], Rs is a map from the limit of q†|s?sKs to the limit of q†|Ks induced by

precomposition on the diagram. But by Prp. 5.5, q is a S-limit diagram if and only if q† is a right
Kan extension of q†, in which case both of the limits in question are equivalent to q†(s). The assertion
now follows. �

11.8. Proposition. Let p : S ?S K C be a S-functor. The following are equivalent:
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(1) p is a S-limit diagram.
(2) For all s ∈ S and c ∈ Cs, Map

Cs
(c, ps(−)) : s ?s Ks Top

Ss/
is a Ss/-limit diagram.

(3) For all s ∈ S and c ∈ Cs, Map
/Cs

(c, C
/(ps,S

s/)
s ) Map

/Cs
(c, C

/(ps,S
s/)

s ) is an equivalence.

Moreover, if the above conditions obtain, then

Map
/Cs

(c, C
/(ps,S

s/)
s ) ' Map

Cs
(c, ps(v))

where v is the cone point {s} ∈ s ?s Ks.

Proof. (2) ⇔ (3): We will show that the statements match after fixing c ∈ Cs. To ease notation, let
us replace Ss/ by S and suppose that s ∈ S is an initial object. By Lm. 11.7 and using that Cc/ is
the S-unstraightening of Map

C
(c,−), Map

C
(c, p(−)) is a S-limit diagram if and only if

Map
/C

(S ?S K,C
c/) Map

/C
(K,Cc/)

is an equivalence. By Cor. 4.27, this map is equivalent by a zig-zag to the map

Map
/C

(c, C/(p,S)) Map
/C

(c, C/(p,S)).

The assertion now follows. The last assertion also follows in view of the equivalence C/(p,S) ' C/p(v)

and Map
/C

(c, C/p(v)) ' c×C C/p(v) ' Map
C

(c, p(v)).

(1) ⇔ (3): This follows from Lm. 11.6 applied to C/(p,S) C/(p,S), which is a map of S-right
fibrations over C. �

11.9. Corollary. Let F : C D be a S-functor. Then

(1) F strongly preserves S-limits if and only if for all s ∈ S and d ∈ Ds, Map
Ds

(d, Fs(−)) :

Cs Top
Ss/

preserves Ss/-limits.

(2) F strongly preserves S-colimits if and only if for all s ∈ S and d ∈ Ds, Map
Ds

(Fs(−), d) =

Map
Dvop
s

(d, F vop
s (−)) : Cvop

s Top
Ss/

preserves Ss/-limits.

11.10. Corollary. Let C be a S-category. The Yoneda embedding j : C PS(C) strongly preserves
and detects S-limits.

Proof. Combine Prp. 11.8 and Prp. 9.17. �

Proof of Thm. 11.5. By Thm. 10.4, we have a S-adjunction

j! : FunS(C,E) FunS(PS(C), E) :j∗

with j∗j! ' id and the essential image of j! spanned by the left Ss/-Kan extensions ranging over all
s ∈ S. By Prp. 8.2, taking cocartesian sections yields an adjunction

j! : FunS(C,E) FunS(PS(C), E) :j∗

again with j∗j! ' id and the essential image of j! spanned by the left S-Kan extensions. Both assertions
will therefore follow if we prove that for a S-functor F : PS(C) E, F strongly preserves S-colimits
if and only if F is a left S-Kan extension of its restriction f = F |C .

For the ‘only if’ direction, because idPS(C) is a S-left Kan extension of j by the S-Yoneda lemma
11.1, F = F ◦ idPS(C) is a left S-Kan extension as it is the postcomposition of idPS(C) with a strongly
S-colimit preserving functor.

For the ‘if’ direction, we use the criterion of Cor. 11.9. Replacing Ss/ by S and supposing that s ∈ S
is an initial object, we reduce to showing that for all x ∈ Es, Map

E
(F (−), x) : PS(C)vop Top

S
preserves S-limits. We first observe that F vop is a S-right Kan extension (of fvop), hence so is
Map

E
(F (−), x) = Map

Evop(x,−) ◦ F vop as the postcomposition of a S-right Kan extension with a
strongly S-limit preserving functor. However, by the vertical opposite of the S-Yoneda lemma, for
any S-functor G : Cvop Top

S
, the strongly S-limit preserving S-functor Map

PS(C)
(−, G) is a

S-right Kan extension of G. Applying this for G = Map
E

(f(−), x), we conclude. �
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12. Bousfield–Kan formula

In this section, we prove two decomposition formulas for S-colimits which resemble the classical
Bousfield–Kan formula for computing homotopy colimits. We first study the situation when S = ∆0.

12.1. Notation. Let K be a simplicial set and let ∆/K be the nerve of the category of simplices of
K. We denote the first vertex map by υK : ∆op

/K K and the last vertex map by µK : ∆/K K.

By [9, 4.2.3.14], µK is final. Unfortunately, this is the wrong direction for the purposes of obtaining
a Bousfield–Kan type formula, since ∆/K is a cartesian fibration over ∆. To rectify this state of
affairs, we prove that υK is in fact final.

12.2. Proposition. Let K be a simplicial set. Then the first vertex map υK : ∆op
/K K is final.

Equivalently, the last vertex map µKop is initial.

Proof. Note that υK is natural in K and that ∆op
/(−) : sSet sSet preserves colimits. Recall from

[9, 4.1.2.5] that a map f : X Y is final if and only if it is a contravariant equivalence in sSet/Y .
It follows that the class of final maps is stable under filtered colimits, so we may suppose that K has
finitely many nondegenerate simplices. Using left properness of the contravariant model structure,
by induction we reduce to the assertion for K = ∆n. But in this case υK is final by the proof of [9,
4.2.3.15] (which proves the result when K is the nerve of a category).

For the second assertion, we note that the reversal isomorphism ∆/Kop ∼= ∆/K interchanges µKop

and (υK)op. �

12.3. Corollary (Bousfield–Kan formula). Suppose that C admits (finite) coproducts. Then for a
(finite) simplicial set K and a map p : K C, the colimit of p exists if and only if the geometric
realization ∣∣∣∣ ⊔x∈K0

p(x)
⊔
α∈K1

p(α(0))
⊔
σ∈K2

p(σ(0)) . . .

∣∣∣∣
exists, in which case the colimit of p is computed by the geometric realization.

Proof. The fibers of the cocartesian fibration πK : ∆op
/K ∆op are the discrete sets Kn. Therefore,

the left Kan extension of p ◦ υK along πK exists. By Prp. 12.2, colim p ' colim p ◦ υK , and the latter
is computed as the colimit of (πK)!(p ◦ υK) by the transitivity of left Kan extensions. �

We also have a variant of Cor 12.3 where the coproducts over Kn are replaced by colimits indexed
by the spaces Map(∆n,K). To formulate this, we need to introduce some auxiliary constructions. Let
ξ : W ∆op be the opposite of the relative nerve of the inclusion ∆ sSet; this is a cartesian
fibration which is an explicit model for the tautological cartesian fibration over ∆op pulled back from
the universal cartesian fibration over Catop

∞ . Let λ : ∆op W be the ‘first vertex’ section of ξ which
sends an n-simplex ∆a0 ← ...← ∆an to the n-simplex

∆n ... ∆{n−1,n} ∆{n}

∆a0 ... ∆an−1 ∆an

(λa)0 (λa)n−1 (λa)n

of W specified by (λa)i(0) = 0 for all 0 ≤ i ≤ n.

For an ∞-category C, let ZC = F̃un∆op(W,C ×∆op) and let Z ′C ⊂ ZC be the sub-simplicial set on
the simplices σ such that every edge of σ is cocartesian (with respect to the structure map to ∆op), so
that Z ′C ∆op is the maximal sub-left fibration in ZC ∆op. Define a ∆op-functor ∆op

/C ZC
as adjoint to the map ∆op

C ×∆op W C which sends an n-simplex

∆n ... ∆{n−1,n} ∆{n}

∆a0 ... ∆an−1 ∆an

C

(λa)0 (λa)n−1 (λa)n

τ



PARAMETRIZED HIGHER CATEGORY THEORY 67

to τ ◦ (λa)0 ∈ Cn. Note that since ∆op
/C ∆op is a left fibration, this functor factors through Z ′C .

Define a ‘first vertex’ functor ΥC : ZC C by precomposition with ι (using the isomorphism

F̃un∆op(∆op, C ×∆op) ∼= C ×∆op). We then have a factorization of the first vertex map as

∆op
/C Z ′C ZC C.

ΥC

12.4. Proposition. The functors ΥC and Υ′C = (ΥC)|Z′C are final.

Proof. We first prove that ΥC is final by verifying the hypotheses of [9, 4.1.3.1]. Let c ∈ C. The map
ZC C is functorial in C, so we have a map ZCc/ ZC ×C Cc/. We claim that this map is a
trivial Kan fibration. Unwinding the definitions, this amounts to showing that for every cofibration
A B of simplicial sets over ∆op, we can solve the lifting problem

B ∪A A×∆op W Cc/

B ×∆op W C.

Since the class of left anodyne morphisms is right cancellative, we may suppose A = ∅. It thus
suffices to prove that λB = B ×∆op λ : B B ×∆op W is left anodyne for any map of simplicial sets
B ∆op. Observe that even though λ is not a cartesian section, it is a left adjoint relative to ∆op

to ξ by [11, 7.3.2.6] and the uniqueness of adjoints, since on the fibers it restricts to the adjunction
{0} ∆n. Consequently, for any ∞-category B and functor B ∆op, by [11, 7.3.2.5] λB is a
left adjoint, hence left anodyne. From this, we deduce the general case by using the characterization
in [9, 4.1.2.1] of the left anodyne maps X Y as the trivial cofibrations in sSet/Y equipped with
the covariant model structure. Indeed, arguing as in the proof of Prp. 12.2, by induction on the
nondegenerate simplices of B we reduce to the known case B = ∆n.

We next prove that ZC is weakly contractible if C is, which will conclude the proof for ΥC . For
this, another application of (the opposite of) [11, 7.3.2.6] shows that the ∆op-functor C×∆op ZC
defined by precomposition by ξ is a left adjoint relative to ∆op to the functor (ΥC , id∆op), because it
restricts to the adjunction ι : C Fun(∆n, C) :ev0 on the fibers. Hence, |ZC | ' |C ×∆op| ' |C|,
and the latter is contractible by hypothesis.

We employ the same strategy to show that Υ′C is final. Since Cc/ C is conservative, the
trivial Kan fibration above restricts to yield a trivial Kan fibration Z ′Cc/ Z ′C ×C Cc/. Thus it

suffices to show that Z ′C is weakly contractible if C is. By (the opposite of) [6, 7.3], the cocartesian

fibration Z ′C ∆op is classified by the functor ∆op iop

−−→ Cat∞
Map(−,C)−−−−−−→ Top. Let R denote the

right adjoint to the colimit-preserving functor L : Fun(∆op,Top) Cat∞ left Kan extended from
the inclusion i : ∆ ⊂ Cat∞; R sends an ∞-category to its corresponding complete Segal space.
Then R(C) ' Map(−, C) ◦ iop. For any X• ∈ Fun(∆op,Top), we have colimX ' |L(X•)|, hence
colimR(C) ' |(L ◦R)(C)| ' |C|, where L ◦R ' id by [10, 4.3.16]. By [9, 3.3.4.6], |Z ′C | ' colimR(C),
so we conclude that |Z ′C | is contractible. �

12.5. Corollary (Bousfield–Kan formula, ‘simplicial’ variant). Suppose that C admits colimits indexed
by spaces. Then for any ∞-category K and functor p : K C, the colimit of p exists if and only if
the geometric realization∣∣∣∣∣ colim

x∈Map(∆0,K)
p(x) colim

α∈Map(∆1,K)
p(α(0)) colim

σ∈Map(∆2,K)
p(σ(0)) . . .

∣∣∣∣∣
exists, in which case the colimit of p is computed by the geometric realization.

Proof. Using Prp. 12.4, we may repeat the proof of Cor. 12.3, now using the span

∆op ← Z ′K
Υ′K−−→ K.

�
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We now proceed to relativize the above picture, starting with the map ΥC . Let C S be a
S-category. Define the map

ΥC,S : F̃un∆op×S/S(W × S,∆op × C) C

to be the composition of the map to F̃un∆op×S/S(∆op×S,∆op×C) given by precomposition by λ×idS ,
together with the equivalence of Lm. 9.5 of this to ∆op ×C and the projection to C. Define Υ′C,S to

be the restriction of ΥC,S to the maximal sub-left fibration (with respect to ∆op × S).

12.6. Theorem. The S-functors ΥC,S and Υ′C,S are S-final.

Proof. For every object s ∈ S, we have a commutative diagram

F̃un∆op×S/S(W × S,∆op × C)s F̃un∆op×S/S(∆op × S,∆op × C)s Cs

F̃un∆op(W,∆op × Cs) F̃un∆op(∆op,∆op × Cs) ∼= ∆op × Cs Cs

(λ×idS)∗s

(ΥC,S)s

' ' =

λ∗

ΥCs

prCs

where the left two vertical maps are given by the natural categorical equivalences of Lm. 9.6; the
only point to note is that the equivalences of Lm. 9.5 and Lm. 9.6 coincide when the first variable is
trivial. By Prp. 12.4, ΥCs is final, so (ΥC,S)s is final. By the S-cofinality Thm. 6.7, ΥC,S is S-final.
A similar argument shows that Υ′C,S is S-final. �

The process of relativizing υC is considerably more involved. We begin with some preliminaries on
the relative nerve construction. Let J be a category.

12.7. Lemma. The adjunctions

FJ : sSet/N(J) Fun(J, sSet) :NJ

F+
J : sSet+

/N(J) Fun(J, sSet+) :N+
J

of [9, §3.2.5] are simplicial.

Proof. Let K : J sSet denote the constant functor at a simplical set K. We have an obvious map
χK : N(J)×K NJ(K) natural in K and hence a map

(ηX , χK ◦ pr) : X ×K NJ(FJX ×K) ∼= NJFJX ×NJ(K)

natural in X and K. We want to show the adjoint

θX,K : FJ(X ×K) FJ(X)×K

is an isomorphism. Both sides preserve colimits separately in each variable, so we may suppose
X = ∆n J and K = ∆m. By [9, 3.2.5.6], FI(I)(−) ∼= N(I/−), and by [9, 3.2.5.8], for any functor
f : I J , the square

sSet/N(I) sSet/N(J)

Fun(I, sSet) Fun(J, sSet)

f!

FI FJ

f!

commutes. Letting I = ∆n ×∆m and f : I J be the structure map, we have

FI(∆
n ×∆m)(k, l) ∼= (∆n)/k × (∆m)/l ∼= ∆k ×∆l.

Factoring f as ∆n ×∆m g−→ ∆n h−→ J , we then have

g!FI(∆
n ×∆m)(k) ∼= ∆i ×∆m.
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Let G = g!FI(∆
n ×∆m), so that FJ(∆n ×∆m)(j) ∼= (h!G)(j). Then

(h!G)(j) ∼= colim
∆n×JJ/j

(
(k, h(k)→ j) 7→ ∆k

)
×∆m ∼= FJ(∆n)(j)×∆m

and one can verify that θX,K implements this isomorphism. For the assertion about F+
J a N

+
J , recall

that the simplicial tensor sSet × sSet+ sSet+ is given by (K,X) 7→ K] ×X. Consequently, in
the above argument we may simply replace ∆m by (∆m)] to conclude. �

Since N+
J (S]) = N(J)× S], the adjunction F+

J a N
+
J lifts to an adjunction

F+
J,S : sSet+

/N(J)×S Fun(J, sSet+
/S) :N+

J,S

between the overcategories. Moreover, for any functor f : T S, the square

Fun(J, sSet+
/S) sSet+

/N(J)×S

Fun(J, sSet+
/T ) sSet+

/N(J)×T ,

N+
J,S

f∗ (id×f)∗

N+
J,T

commutes.

12.8. Proposition. Equip sSet+
/N(J)×S with the cocartesian model structure and Fun(J, sSet+

/S) with

the projective model structure, where sSet+
/S has the cocartesian model structure. Then the adjunction

F+
J,S : sSet+

/N(J)×S Fun(J, sSet+
/S) :N+

J,S

is a Quillen equivalence.

Proof. We first prove that the adjunction is Quillen. Because this is a simplicial adjunction between
left proper simplicial model categories, it suffices to show that F+

J,S preserves cofibrations and N+
J,S pre-

serves fibrant objects. Observe that the slice model structure on sSet+
/N(J)×S

∼= (sSet+
/N(J))/(N(J)×S)]

is a localization of the cocartesian model structure. Similarly, the slice model structure on Fun(J, sSet+
/S) ∼=

Fun(J, sSet+)/S] is a localization of the projective model structure, since the trivial fibrations for the

two model structures coincide and postcomposition by π! : sSet+
/S sSet+ gives a Quillen left ad-

joint between the projective model structures. Since the lift of a Quillen adjunction L : M N :R

to the adjunction L̃ : M/R(x) N/x :R̃ is Quillen for the slice model structures, we deduce that

F+
J,S preserves cofibrations.

Now suppose F : J sSet+
/S is fibrant. Since S is an ∞-category, F → S is a fibration in

Fun(J, sSet). Hence NJ,S(F ) N(J)×S is a categorical fibration. We verify that it is a cocartesian
fibration (with every marked edge cocartesian) by solving the lifting problem (n ≥ 1)

\Λ
n
0 N+

J,S(F )

\∆
n (N(J)× S)].

(j•,s•)

Unwinding the definitions, this amounts to solving the lifting problem

\Λ
n
0 F (jn)

\∆
n S],s•

and the dotted lift exists because F (jn) is cocartesian over S with the cocartesian edges marked.
Finally, it is easy to see that marked edges compose and are stable under equivalence. We conclude
that N+

J,S(F ) is fibrant in sSet+
/N(J)×S .
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To prove that the Quillen adjunction is a Quillen equivalence, we will show that the induced
adjunction of ∞-categories

F′+J,S : N((sSet+
/N(J)×S)◦) N(Fun(J, sSet+

/S)◦) :N ′+J,S

is an adjoint equivalence, where N ′+J,S is the simplicial nerve of N+
J,S and F′+J,S is any left adjoint to

N ′+J,S . We first check that N ′+J,S is conservative. Indeed, for this we may work in the model category:

for a natural transformation α : F → G in Fun(J, sSet+
/S), N+

J,S(F ) N+
J,S(G) on fibers is given

by F (j)s G(j)s, hence if F,G are fibrant and N+
J,S(α) is an equivalence then α is as well. It now

suffices to show that the unit transformation η : id N ′+J,SF
′+
J,S is an equivalence. We have the known

equivalence N((sSet+
/N(J)×S)◦) ' Fun(N(J)× S,Cat∞) so it further suffices to check that the map

(id× is)∗ (id× is)∗N ′+J,SF
′+
J,S ' N

′+
J i∗sF

′+
J,S

is an equivalence for all s ∈ S, is : {s} S the inclusion. Equivalently, since F+
J a N

+
J is a Quillen

equivalence ([9, 3.2.5.18]), we must show that the adjoint map

F′+J i
∗
s (id× is)∗F′+J,S

is an equivalence. This statement is in turn equivalent to the adjoint map

θ : N ′+J,S(is)∗ (id× is)∗N ′+J
being an equivalence. Recall that for a functor f : T S, f∗ : Fun(T,Cat∞) Fun(S,Cat∞) is
induced by π∗ρ

∗ : sSet+
/T sSet+

/S for the span

S] (O(S)×S T )] T ]
ρπ

with π given by evaluation at 0 and ρ projection to T . Moreover, for a functor id×f : U×T U×S,
we may elect to use the span

(U × S)] (U × O(S)×S T )] (U × T )]
id×ρid×π

to model (id× f)∗. Letting f = is, we see that θ is induced by the map

N+
J,Sπ∗ρ

∗ (id× π)∗N
+
J,Ss/

ρ∗ ∼= (id× π)∗(id× ρ)∗N+
J .

where the first map is adjoint to the isomorphism (id × π)∗N+
J,S
∼= N+

J,Ss/
π∗. Direct computation

reveals that this map is an equivalence on fibrant F : J sSet+. �

We now return to the situation of interest. Let C be a S-category with structure map π : C S.
We first extend our existing notation x for objects x ∈ C.

12.9. Notation. For an n-simplex σ of C, define

σ = {σ} ×Fun(∆n×{0},C) Fun((∆n)[ × (∆1)], \C)×Fun(∆n×{1},S) S.

12.10. Lemma. There exists a map bσ : σ {πσ(n)} ×S O(S) = Sπσ(n)/ which is a trivial Kan
fibration.

Proof. First define a map b′σ : σ πσ to be the pullback of the map

(e0,O(π))∗ : Fun(∆n,Ococart(C)) C∆n

×S∆n Fun(∆n,O(S))

over {σ} and S. Since (e0,O(π)) is a trivial Kan fibration, so is b′σ. Next, let K be the pushout
∆n × {0} ∪{n}×{0} {n} ×∆1. We claim that the map Fun(∆n,O(S))×S∆n S Fun(K,S) induced

by K ⊂ ∆n×∆1 is a trivial Kan fibration. For a monomorphism A B, we need to solve the lifting
problem

A Fun(∆n,O(S))×S∆n S

B Fun(K,S).
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This transposes to

A×∆n
⋃
A×{n}B × {n} O(S)

B ×∆n S

ev0

and the lefthand map is right anodyne by [9, 2.1.2.7], hence the dotted lift exists as ev0 is a cartesian
fibration. Now define b′′σ to be the pullback

πσ = {πσ} ×S∆n Fun(∆n,O(S))×S∆n S {πσ} ×S∆n Fun(K,S) ∼= Sπσ(n)/;

this is also a trivial Kan fibration. Finally, let bσ = b′′σ ◦ b′σ. �

We will regard σ as a Sπσ(n)/ or S-category via bσ. We also have a target map σ C∆n

induced
by ∆n × {1} ⊂ ∆n ×∆1. This covers the target map Sπσ(n)/ S and is a S-functor.

Define a functor FC : ∆op sSet+
/S on objects [n] by

FC([n]) =
⊔
σ∈Cn

σ]

and on morphisms α : [m]→ [n] by the map σ σα induced by precomposition by α : ∆m ∆n.

12.11. Remark. The map σ σ(n) is compatible with the maps bσ and bσ(n) of Lm. 12.10, hence is

a categorical equivalence (in fact, a trivial Kan fibration). Consequently, given a morphism f : x→ y

in C, by choosing an inverse to f
'−→ y we obtain a map f∗ : y x, unique up to contractible choice.

Moreover, if f lies over an equivalence, then f x is a trivial Kan fibration, so we also obtain a
map f! : x y.

In order to define the S-first vertex map N+
∆op,S(FC) C, we need to introduce a few preliminary

constructions. Let An ⊂ O(∆n) be the sub-simplicial set where a k-simplex x0y0 → ... → xkyk is in
An if and only if xk ≤ y0. For the reader’s aid we draw a picture of the inclusion An ⊂ O(∆n) for
n = 2, where dashed edges are not in A2:

00

01 11

02 12 22.

12.12. Lemma. The inclusion An O(∆n) is inner anodyne.

Proof. In this proof we adopt the notation [x0y0, ..., xkyk] for a k-simplex of O(∆n). Let E be the
collection of edges [ab, xy] in O(∆n) where x > b, and choose a total ordering ≤ on E such that if we
have a factorization

ab xy

a′b′ x′y′

then [a′b′, x′y′] ≤ [ab, xy]. Index edges in E by I = {0, ..., N}. Define simplicial subsets An,i of
O(∆n) such that An,i is obtained by expanding An to contain every k-simplex [x0y0, ..., xkyk] with
[x0y0, xkyk] in E<i. We will show that each inclusion An,i An,i+1 is inner anodyne. We may
divide the nondegenerate k-simplices [x0y0, x1y1, ..., xkyk] in An,i+1 but not in An,i into six classes:

I A1: x1y1 6= x0(y0 + 1) and y1 > y0.
I A2: x1y1 = x0(y0 + 1).
I B1: x1y1 = (x0 + 1)y0, y2 > y0, and x2y2 6= (x0 + 1)(y0 + 1).
I B2: x1y1 = (x0 + 1)y0 and x2y2 = (x0 + 1)(y0 + 1).
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I C1: x1y1 6= (x0 + 1)y0 and y1 = y0.
I C2: x1y1 = (x0 + 1)y0 and y2 = y0.

We have bijections between classes of form 1 and classes of form 2 given by

I A: [x0y0, x1y1, ..., xkyk] 7→ [x0y0, x0(y0 + 1), x1y1, ..., xkyk].
I B: [x0y0, x0 + 1y1, x2y2, ..., xkyk] 7→ [x0y0, (x0 + 1)y0, (x0 + 1)(y0 + 1), x2y2, ..., xkyk].
I C: [x0y0, x1y1, ..., xkyk] 7→ [x0y0, (x0 + 1)y0, x1y1, ..., xkyk].

Moreover, this identifies simplices in a class of form 1 as inner faces of simplices in the corresponding
class of form 2. Let P be the collection of pairs τ ⊂ τ ′ of nondegenerate k−1 and k-simplices matched
by this bijection. Choose a total ordering on P where pairs are ordered first by the dimension of the
smaller simplex, and then by A < B < C, and then randomly. Let J = {0, ...,M} be the indexing set
for P . We define a sequence of inner anodyne maps

An,i = An,i,0 An,i,1 ... An,i,M+1 = An,i+1

such that An,i,j+1 is obtained from An,i,j by attaching the jth pair τ ⊂ τ ′ along an inner horn. For
this to be valid, we need the other faces of τ ′ to already be in An,i,j . The ordering on E was chosen
so that the outer faces of τ ′ are in An,i. The argument for the inner faces proceeds by cases:

I τ ′ is in class A2: The other inner faces are also in class A2 since they contain x0(y0 + 1),
hence were added at some earlier stage.

I τ ′ is in class B2: The other inner faces of [x0y0, (x0 + 1)y0, (x0 + 1)(y0 + 1), x2y2, ..., xkyk] are
all in class B2, except for [x0y0, (x0 + 1)(y0 + 1), x2y2, ..., xkyk], which is in class A1. Both of
these were added at an earlier stage.

I τ ′ is in class C2: The other inner faces are in class C2 or B1 since they contain (x0 + 1)y0,
hence were added at some earlier stage.

�

Let En ⊂ (An)1 ⊂ O(∆n)1 be the subset of edges x0y0 → x1y1 where y0 = y1. Define simplicial
sets C ′ and C ′′ to be the pullbacks

C ′• Hom((O(∆•), E•), \C)

Hom(∆•, S) Hom(O(∆•), S)
ev∗0

,

C ′′• Hom((A•, E•), \C)

Hom(∆•, S) Hom(A•, S).
ev∗0

We now show that the map C ′ C ′′ induced by precomposition by A• O(∆•) is a trivial
Kan fibration. Indeed, in order to solve the lifting problem

∂∆n C ′

∆n C ′′

we must supply a lift

An
⋃

∪An−1

(
⋃

O(∆n−1)) C

O(∆n) S

and the left vertical map is a trivial cofibration by Lm. 12.12. Let σ : C ′′ C ′ be any section. Also
let δ : C ′ C be the map induced by precomposition by the identity section ∆• O(∆•).

Define a map υC,S : N+
∆op,S(FC) C over S as follows: the data of an n-simplex of N+

∆op,S(FC)
consists of

I an n-simplex ∆a0 ← ...← ∆an in ∆op (so we have maps fij : ∆aj ∆ai for i ≤ j);
I an n-simplex s• : ∆n S;
I a choice of a0-simplex σ0 ∈ Ca0

;
I for 0 ≤ i ≤ n, a map γi : ∆i σi, where σi = σ0 ◦ f0i
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such that for all 0 ≤ i ≤ j ≤ n, the diagram

∆i σi

∆j σj

S

γi

{0,...,i}⊂[j] f∗ij

γj

(s•)|{0,...,j}

commutes. Let γi : ∆i ×∆ai ×∆1 C denote the adjoint map.
We now define a map An C to be that uniquely specified by sending for all 0 ≤ k ≤ n the

rectangle ∆k ×∆n−k ⊂ An given by 00 7→ 0k and k(n− k) 7→ kn to

∆k ×∆n−k id×(λa)k−−−−−−→ ∆k ×∆ak × {1}
γi|{1}−−−−→ C

where the maps (λa)k are obtained from the first vertex section of W ∆op restricted to a• as

before. One may check that the composite An C S factors as An ∆n s•−→ S, so this defines
a n-simplex of C ′′. This procedure is natural in n, so yields a map N+

∆op,S(FC) C ′′. Finally,

postcomposition by δ ◦ σ : C ′′ C define our desired map υC,S . By Prp. 12.8, N+
∆op,S(FC)

π′−→ S

is an S-category with an edge π′-cocartesian if and only if it is degenerate when projected to ∆op.
These edges are evidently sent to π-cocartesian edges in C, so υC is a S-functor.

12.13. Theorem. The S-first vertex map υC,S : N+
∆op,S(FC) C is fiberwise a weak homotopy

equivalence. Moreover, υC,S is S-final if either C S is a left fibration, or S is equivalent to the
nerve of a 1-category.

Proof. Let t ∈ S be an object and it : {t} S the inclusion. Then N+
∆op,S(FC)t ∼= N+

∆op(i∗tFC).

We have a map N+
∆op(i∗tFC) ∆op

/C
∼= N+

∆op(C•) of left fibrations over ∆op induced by the natu-

ral transformation i∗tFC C• which collapses each σ ×S {t} to a point. Moreover, this natural
transformation is objectwise a Kan fibration, so the map itself is a left fibration. Also define a map
N+

∆op(i∗tFC) (S/t)op as follows: in the above notation, the γ0 map in the data of an n-simplex

(a•, γi : ∆i σi ×S {t}) yields a map πγ0 : ∆a0 O(S)×S {t} = S/t, and we send the n-simplex
to

∆n (λarev)0−−−−−→ (∆a0)op (πγ0)op

−−−−→ (S/t)op

where arev
• is (∆a0)op ← ...← (∆an)op. Using these maps we obtain a commutative square

N+
∆op(i∗tFC) Cop ×Sop (S/t)op

∆op
/C Cop.

µop
C

We claim that the map

θC,t : N+
∆op(i∗tFC) (∆op

/C)×Cop (C ×S S/t)op

is a categorical equivalence. Since θC,t is a map of left fibrations over ∆op
/C , it suffices to check that

for every object σ ∈ ∆op
/C , the map on fibers

σ ×S {t} (Sop)t/ ×Sop {πσ(n)} ' {πσ(n)} ×S S/t

is a homotopy equivalence. But this is the pullback of the trivial Kan fibration of Lm. 12.10 over {t}.
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We next define a map N+
∆op(i∗tFC) S/t by sending (a•, γi) to πγ0 ◦ (λa)0. Then the outer

rectangle

N+
∆op(i∗tFC) C ×S S/t S/t

∆op
/C C S

υ′C,t

υC π

commutes so we obtain the dotted map υ′C,t.

Next, we choose a section P of the trivial Kan fibration Ococart(C) C×SO(S) which restricts to
the identity section on C. P restricts to a map Pt : C ×S S/t Ococart(C)×S {t}, and it is tedious
but straightforward to construct a homotopy between the composition (ev1 Pt) ◦ υ′C,t and (υC,S)t.

Finally, we define a map υ′′C,t : ∆op
/C×SS/t

N+
∆op(i∗tFC) as follows: given an n-simplex

∆a0 . . . ∆an

C ×S S/t

τ0 τn

let σi = prC ◦τi, and define γi : ∆i σi ×S {t} as the composition of the projection to ∆0 and the

adjoint of the map Pt ◦ τi. Then (a•, γi) assembles to yield an n-simplex of N+
∆op(i∗tFC).

Unwinding the definitions of the various maps, we identify the composition υ′C,t ◦ υ′′C,t as given by

υC×SS/t , and the composition θC,t ◦ υ′′C,t as given by the map ∆op
/ prC

to the factor ∆op
/C and the map

(µC×SS/t)
op to the factor (C ×S S/t)op. By Prp. 12.2 and the fact that final maps pull back along

cocartesian fibrations, we deduce that in

∆op
/C×SS/t

∆op
/C ×Cop (C ×S S/t)op (C ×S S/t)op

the long composition and the second map are both final. Consequently, θC,t ◦ υ′′C,t is a weak

homotopy equivalence. Moreover, if S is equivalent to the nerve of a 1-category then θC,t ◦ υ′′C,t is
a categorical equivalence, as may be verified by checking that the map is a fiberwise equivalence
over ∆op

/C . Since θC,t is a categorical equivalence, υ′′C,t is then a weak homotopy equivalence resp. a

categorical equivalence. Since υC×SS/t is final, υ′C,t is then a weak homotopy equivalence resp. final.

For the last step, let jt : Ct C ×S S/t denote the inclusion. As the inclusion of the fiber over
a final object into a cocartesian fibration, jt is final. (ev1 Pt) ◦ jt = idCt , so by right cancellativity
of final maps, ev1 Pt is final. We conclude that (υC,S)t is a weak homotopy equivalence resp. final.
In addition, if C S is a left fibration, (υC,S)t has target a Kan complex, so is final ([11, 2.3.4.6]).
Invoking the S-cofinality Thm. 6.7, we conclude the proof. �

12.14. Remark. The above proof that the S-first vertex map υC,S is final in special cases hinges upon
the finality of the map θC,t ◦ υ′′C,t. We believe, but are unable to currently prove, that this map is
always final.

We conclude this section with our main application to decomposing S-colimits.

12.15. Corollary. Suppose that Sop admits multipullbacks. Then C is S-cocomplete if and only C
admits all S-coproducts and geometric realizations.

Proof. We prove the if direction, the only if direction being obvious. Let K be a Ss/-category and
p : K Cs a Ss/-diagram. First suppose that K Ss/ is a left fibration. Consider the diagram

N+
∆op,Ss/

(FK) K Cs

∆op × Ss/.

υ
K,Ss/

ρ

p
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By Thm. 12.13, the Ss/-colimit of p is equivalent to that of p◦υK,Ss/ . Since ρ is S-cocartesian, by Thm.

9.15 the Ss/-left Kan extension of p◦υK,Ss/ along ρ exists provided that for all n ∈ ∆op and f : s→ t,

the St/-colimit exists for (p ◦ υK,Ss/)(n,f). To understand the domain of this map, note that because

the pullback of ρ along f∗ : ∆op×St/ ∆op×Ss/ is given by N+
∆op,St/

(f∗FK), the assumption that

Sop admits multipullbacks ensures that the (n, f)-fibers of ρ decompose as coproducts of representable
left fibrations. Therefore, these colimits exist since C is assumed to admit S-coproducts. Now by
transitivity of left Ss/-Kan extensions, the Ss/-colimit of p◦υK,Ss/ is equivalent to that of ρ!(p◦υK,Ss/),
and this exists since C is assumed to admit geometric realizations.

Now suppose that K Ss/ is any cocartesian fibration. Consider the diagram

ιF̃un∆op×Ss/(W × Ss/,∆op ×K) K Cs

∆op × Ss/.

Υ′
K,Ss/

ρ′

p

By Thm. 12.6, the Ss/-colimit of p is equivalent to that of p ◦ Υ′
K,Ss/

. By Prp. 9.7, the (n, f)-fiber

of ρ′ is equivalent to ιFunSt/(∆n × St/,K ×Ss/ St/), which in any case remains a left fibration. We
just showed that for all t ∈ S, Ct admits St/-colimits indexed by left fibrations. We are thereby able

to repeat the above proof in order to show that the Ss/-colimit of p exists. �

13. Appendix: Fiberwise fibrant replacement

In this appendix, we formulate a result (Prp. 13.4) which will allow us to recognize a map as a
cocartesian equivalence if it is a marked equivalence on the fibers. We begin by introducing a marked
variant of Lurie’s mapping simplex construction.

13.1. Definition. Suppose a functor φ : [n] sSet+, A0 ... An. Define M(φ) to be the
simplicial set which is the opposite of the mapping simplex construction of [9, §3.2.2], so that a m-
simplex of M(φ) is given by the data of a map α : ∆m ∆n together with a map β : ∆m Aα(0).
Endow M(φ) with a marking by declaring an edge e = (α, β) of M(φ) to be marked if and only if β
is a marked edge of Aα(0). Note that if each Ai is given the degenerate marking, then the marking on
M(φ) is that of [9, 3.2.2.3].

13.2. Lemma. Suppose η : φ ψ is a natural transformation between functors [n] sSet+ such
that for all 0 ≤ i ≤ n, ηi : Ai Bi is a cocartesian equivalence. Then M(η) : M(φ) M(ψ) is a
cocartesian equivalence in sSet+

/∆n .

Proof. Using the decomposition ofM(φ) as the pushoutM(φ′)∪A0×∆n−1A0×∆n for φ′ : A1 ... An,

this follows by an inductive argument in view of the left properness of sSet+
/∆n . �

13.3. Construction. Let X ∆n be a cocartesian fibration, let σ be a section of the trivial Kan
fibration Ococart(X) X×∆nO(∆n) which restricts to the identity section on X, and let P = ev1 ◦σ
be the corresponding choice of pushforward functor. For 0 ≤ i < n, define fi : Xi × ∆1 X by
P ◦(idXi×f ′i) where f ′i : ∆1 O(∆n) is the edge (i = i) (i i+1), and let φ : X∼0 ... X∼n
be the sequence obtained from the fi×{1}. We will explain how to produce a map M(φ) X over
∆n via an inductive procedure. Begin by defining the map M(φ)n = Xn Xn to be the identity.
Proceeding, observe that M(φ) is the pushout

X0 ×∆{1,...,n} X0 ×∆n

M(φ′) M(φ)

γ
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with φ′ the composable sequence X1 ... Xn and the map γ given by X0 × ∆n−1 X1 ×
∆n−1 M(φ′). Given a map g′ : M(φ′) X over ∆n−1, we have a commutative square

X0 ×∆1 ∪X0×∆{1} X0 ×∆{1,...,n} X

X0 ×∆n ∆n,

(f0, g
′ ◦ γ)

and the left vertical map is inner anodyne by [9, 2.1.2.3] and [9, 2.3.2.4]. Thus a dotted lift exists and
we may extend g′ to g : M(φ) X.

Note that gi is the identity for all 0 ≤ i ≤ n. Therefore, if we instead take the marking on M(φ)
which arises from the degenerate marking on the Xi, then g is (the opposite of) a quasi-equivalence
in the terminology of [9, 3.2.2.6], hence a cocartesian equivalence in sSet+

/∆n by [9, 3.2.2.14]. Now by

Lm. 13.2, g with the given marking is a cocartesian equivalence.
This construction of M(φ) X enjoys a convenient functoriality property: given a cofibration

F : X Y between cocartesian fibrations over ∆n, we may first choose σX as above, and then define
σY to be a lift in the diagram

(X ×∆n O(∆n)) ∪X Y Ococart(Y )

Y ×∆n O(∆n) Y ×∆n O(∆n).

(F ◦ σX , ι)

∼

=

σY

Consequently, we obtain compatible pushforward functors and a natural transformation η : φX φY ,
which yields, by a similar argument, a commutative square

M(φX) M(φY )

X Y.

M(η)

F

where the vertical maps are cocartesian equivalences in sSet+
/∆n .

13.4. Proposition. Let p : X S and q : Y S be cocartesian fibrations over S and let F :
X Y be a S-functor. Suppose collections of edges EX , EY of X, Y such that

(1) EX resp. EY contains the p resp. q-cocartesian edges;
(2) For E 0

X ⊂ EX the subset of edges which are either p-cocartesian or lie in a fiber, we have that
(X,E 0

X) ⊂ (X,EX) is a cocartesian equivalence in sSet+
/S, and ditto for Y ;

(3) F (EX) ⊂ EY ;
(4) For all s ∈ S, Fs : (Xs, (EX)s) (Ys, (EY )s) is a cocartesian equivalence in sSet+.

Let X ′ = (X,EX), Y ′ = (Y,EY ), and F ′ : X ′ Y ′ be the map given on underlying simplicial sets
by F . Then for all simplicial sets U and maps U S, F ′U is a cocartesian equivalence in sSet+

/U .

Proof. Without loss of generality, we may assume that an edge e is in EX if and only if either e is
p-cocartesian or p(e) is degenerate, and ditto for EY . First suppose that F is a trivial fibration in
sSet+

/S and for all s ∈ S, F ′s reflects marked edges. Then F ′ is again a trivial fibration because F ′

has the right lifting property against all cofibrations. For the general case, factor F as X
G−→ Z

H−→ Y
where G is a cofibration and H is a trivial fibration, and let Z ′ = (Z,EZ) for EZ the collection of edges
e where e is in EZ if and only if H(e) is in EY . Then for all s ∈ S, Z ′s Y ′s is a trivial fibration in
sSet+, so as we just showed H ′ : Z ′ Y ′ is a trivial fibration. We thereby reduce to the case that
F is a cofibration.

Let U denote the collection of simplicial sets U such that for every map U S, F ′U is a cocartesian
equivalence in sSet+

/U . We need to prove that every simplicial set belongs to U . For this, we will
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verify the hypotheses of [9, 2.2.3.5]. Conditions (i) and (ii) are obvious, condition (iv) follows from
left properness of the cocartesian model structure and [11, B.2.9], and condition (v) follows from the
stability of cocartesian equivalences under filtered colimits and [11, B.2.9]. It remains to check that
every n-simplex belongs to U , so suppose S = ∆n. Let

M(φX) M(φY )

X Y

M(η)

F

be as in Cnstr. 13.3. Let φ′X be the sequence X ′0 ... X ′n, where the maps are the same as
in φX , and similarly define φ′Y and η′. Then we have pushout squares

M(φX) M(φ′X)

X X ′′

,

M(φY ) M(φ′Y )

Y Y ′′

with all four vertical maps cocartesian equivalences in sSet+
/∆n . Here we replace X ′ by X ′′, which

has the same underlying simplicial set X but more edges marked with X ′ ⊂ X ′′ left marked anodyne,
so that the vertical maps M(φ′X) X ′′ are defined and the squares are pushout squares (again,
ditto for Y ′′). Note that F defines a map F ′′ : X ′′ Y ′′.

Finally, we have the commutative square

M(φ′X) M(φ′Y )

X ′′ Y ′′.

M(η′)

F ′′

By assumption, η′ : φ′X φ′Y is a natural transformation through cocartesian equivalences in
sSet+. By Lm. 13.2, M(η′) is a cocartesian equivalence in sSet+

/∆n . We deduce that F ′′, hence F ′,

is as well. �

13.5. Remark. By a simple modification of the above arguments, we may further prove that for any
marked simplicial set A S, F ′A is a cocartesian equivalence in sSet+

/A. We leave the details of this

to the reader.
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