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Equivariant homotopy theory

Let G be a finite group and let X be a topological space with G -action
(e.g. G = C2 and X = U(n) with the complex conjugation action). What
is the “homotopy type” of X?

Answer: depends on the class of weak equivalences one inverts in the
larger category of G -spaces.

Inverting the class of maps that induce a weak equivalence of underlying
spaces, X ; the homotopy type of the underlying space X , together with
the homotopy coherent G -action. Can extract homotopy fixed points and
orbits X hG , XhG from this.
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Elmendorf’s theorem

But we might also want to retain the data of the actual fixed point spaces
XH . To do this, we can instead invert the smaller class of maps that
induce a weak equivalence on all fixed points. Then the resulting
“homotopy type” of X knows the homotopy types of all the XH , together
with the restriction and conjugation maps relating them.

Elmendorf’s theorem: TopG [W −1] ' Fun(Oop
G ,Top) where TopG is a

category of (nice) topological spaces with G -action, W is the class of
maps as above, Top is the ∞-category of spaces, and OG is the orbit
category of G .

Definition

TopG := Fun(Oop
G ,Top) is the ∞-category of G -spaces.
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G -coproducts

G -coproducts: let I be a G -set and X a topological space with G -action.
Define

∐
I X to be the space

∐
|I | X with G -action g · xi = (gx)gi .

Question: Does the equivalence of Elmendorf’s theorem see the
G -coproducts?

Exercise: Show that
∐

G/H X homeomorphic as a G -space to IndG
H ResGH X

for adjunction
IndG

H : TopH TopG :ResGH .

Suggests an answer, but only if we retain whole OG -presheaf of
∞-categories (G/H) 7→ TopH .

Definition

Top
G

: G/H 7→ TopH is the G -∞-category of G -spaces.
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G -spectra

Let G be a finite group. We have three possibilities for a sensible notion of
G -spectra:

1 The ∞-category of Borel G -spectra, i.e. spectra with G -action. This
is Fun(BG ,Sp), which is the stabilization of Fun(BG ,Top).

2 The ∞-category of ‘naive’ G -spectra, i.e. spectral presheaves on OG .
This is Fun(Oop

G ,Sp), which is the stabilization of TopG .

3 The ∞-category of ‘genuine’ G -spectra SpG , i.e. spectral Mackey
functors on FG .
Let Aeff(FG ) be the effective Burnside (2, 1)-category of G , given by
taking as objects finite G -sets, as morphisms spans of finite G -sets,
and as 2-morphisms isomorphisms between spans. Then
SpG := Fun⊕(Aeff(FG ),Sp), the ∞-category of direct-sum preserving
functors from Aeff(FG ) to Sp.

The last option produces transfer maps, encoded by the covariant maps in
Aeff(FG ) - ubiquitous in examples (e.g. K -theory).
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Universal properties for G -spaces and G -spectra

Idea: G -spectra are obtained from G -spaces by stabilizing and enforcing
the coincidence of G -coproducts and G -products (the Wirthmuller
isomorphism IndGH ' CoindG

H).

Again, want to study presheaf on OG , not just single value on G/G .

We saw in Denis’ talk a theorem characterizing G -spectra along these lines.
We will aim for a somewhat more formal counterpart concerning G -spaces.
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∞-categories: Idea and models

∞-category = category (weakly) enriched in ∞-groupoids (i.e. spaces,
under homotopy hypothesis).

Move from ordinary category theory to ∞-category theory to have
homotopically meaningful universal constructions and universal properties.

Study using models: relative categories, simplicially enriched categories,
complete Segal spaces, quasi-categories.

We will always work within the framework of quasi-categories
(Boardman-Vogt, Joyal, Lurie).
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∞-categories

Definition

An ∞-category C is a simplicial set which has inner horn fillers: for all
0 < k < n and maps f : Λn

k C , f admits a (not necessarily unique!)
extension f : ∆n C .

E.g. k = 1, n = 2:
c1

c0 c2

σ

This defines a weak composition law: if C is an ∞-category, then the
restriction functor Fun(∆2,C ) Fun(Λ2

1,C ) is a trivial Kan fibration, so
the filler is unique up to contractible choice.

Higher fillers encode associativity coherences satisfied by the composition
law.
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∞-categories

∞-categories generalize both Kan complexes (where we allow all horns,
not just inner horns) and categories via their nerve (where the filler is
required to be unique).

Mapping spaces: For objects x , y ∈ C , have Kan complex

MapC (x , y) := {x} ×C Fun(∆1,C )×C {y}.

Can extract ◦ : MapC (x , y)×MapC (y , z) MapC (x , z) as above.

Equivalences within an ∞-category C : edges e : x → y s.t.
e∗ : MapC (y , x) MapC (x , z) equivalence for all z ∈ C .

Categorical equivalences: functors F : C D which are fully faithful and
essentially surjective.
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∞-categories

∞-categories are fibrant objects for the Joyal model structure on sSet:
have refined model categorical techniques.

To produce examples, can use a model to define some ∞-category and
then perform ∞-categorical operations upon it.

E.g. let Top = homotopy coherent nerve of the simplical category of Kan
complexes. Then

Top∗ := Top(∗)/

Sp := Exc∗(Topfin
∗ ,Top)

SpG := Fun⊕(Aeff(FG ),Sp)
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∞-categories: join construction

Can exploit the combinatorics of simplices to effect categorically
meaningful constructions at the level of simplicial sets.

E.g. C ,D ∞-categories ⇒ join C ? D. Has C ,D ⊂ C ? D as full
subcategories, no new objects, and MapC?D(c , d) = ∗, MapC?D(d , c) = ∅.

Let i : ∂∆1 ∆1. Then obtain adjunction

i∗ : sSet/∆1 sSet/∂∆1 :i∗

and can define C ? D := i∗(C ,D). Explicitly, have n-simplices

Hom/∆1(∆n,C ? D) ∼= Hom(∆n0 ,C )× Hom(∆n1 ,D)

ranging over maps ∆n ∼= ∆n0 ?∆n1 ∆1.

Get cone K� = ∆0 ? K , cocone K� = K ?∆0.
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∞-categorical theory of (homotopy) colimits

The intrinsic notion of colimit in an ∞-category is a homotopy colimit
because the enrichment is over spaces.

Definition
1 An object x ∈ C is initial if for all y ∈ C , MapC (x , y) ' ∗.
2 Given a functor p : K C , an extension p : K� C is a colimit

diagram (and p(cone pt) is a colimit of p) if in

∆0 Cp/ Fun(K ?∆0,C )

∆0 Fun(K ,C )

{p}

=
y

{p}

{p} is an initial object, where Cp/ is defined as the pullback.

Jay Shah (MIT) Parametrized higher category theory May 1, 2017 12 / 32



∞-categorical theory of (homotopy) colimits

The intrinsic notion of colimit in an ∞-category is a homotopy colimit
because the enrichment is over spaces.

Definition
1 An object x ∈ C is initial if for all y ∈ C , MapC (x , y) ' ∗.

2 Given a functor p : K C , an extension p : K� C is a colimit
diagram (and p(cone pt) is a colimit of p) if in

∆0 Cp/ Fun(K ?∆0,C )

∆0 Fun(K ,C )

{p}

=
y

{p}

{p} is an initial object, where Cp/ is defined as the pullback.

Jay Shah (MIT) Parametrized higher category theory May 1, 2017 12 / 32



∞-categorical theory of (homotopy) colimits

The intrinsic notion of colimit in an ∞-category is a homotopy colimit
because the enrichment is over spaces.

Definition
1 An object x ∈ C is initial if for all y ∈ C , MapC (x , y) ' ∗.
2 Given a functor p : K C , an extension p : K� C is a colimit

diagram (and p(cone pt) is a colimit of p) if in

∆0 Cp/ Fun(K ?∆0,C )

∆0 Fun(K ,C )

{p}

=
y

{p}

{p} is an initial object, where Cp/ is defined as the pullback.

Jay Shah (MIT) Parametrized higher category theory May 1, 2017 12 / 32



∞-categorical theory of (homotopy) colimits

“Global” colimit functor exists as the left adjoint to the constant diagram
functor:

colim: Fun(K ,C ) C :δ.

Local ⇒ global:

Funcolim(K ?∆0,C ) Fun(K ?∆0,C )

Fun(K ,C ) C

⊂

' evcone
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Parametrized ∞-categories

Fix an ∞-category S . Will work with functors S Cat∞ ⇔ cocartesian
fibrations C S (= S-category).

Cocartesian fibrations are defined by lifting conditions. E.g.

1 s ∈ S ⇒ fiber Cs is an ∞-category;

2 α : s t ∈ S , x ∈ Cs ⇒ Obtain lift α̃ : x y of α, where
y ' α!(x) for α! : Cs Ct the corresponding pushforward functor.
These lifts are called cocartesian edges.

Natural transformation of functors ⇔ map C D of simplicial sets over
S which preserves cocartesian edges.

The necessity of remembering data of cocartesian edges leads one to
consider marked simplicial sets (X ,E ), E ⊂ X1 that contains the
degenerate edges. Then cocartesian fibrations over S are the fibrant
objects in a model structure on sSet+

/(S ,S1).
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Example: S-category of S-objects

The lax colimit functor (C S) 7→ C , Catcocart
∞/S Cat∞ admits a right

adjoint E 7→ ES , which sends E to the S-category of S-objects in E .

To describe ES , note (ES)s ' FunS(S s/,E ) ' Fun(S s/,E ), and the
functoriality given by that in S (−)/.

E.g. if S = Oop
G , then Top

S
= Top

G
, in view of the equivalence of

categories OH ' (OG )/(G/H) (implemented by the induction functor).

We will endow Top
S

with an additional universal mapping property for
suitable functors out of Top

S
.
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Absolute ⇒ Parametrized

Riehl-Verity: Do ∞-category theory within a suitable (∞, 2)-category, e.g.
deriving from a model category enriched over sSetJoyal.

Catcocart
∞/S ' Fun(S ,Cat∞) qualifies.

Absolute Parametrized

∞-category C S-category C ( S)
Functor C D S-functor C D

Functor ∞-category Fun(C ,D) S-functor category FunS(C ,D)
Join C ? D S-join C ?S D

Slice Cp/ S-slice C (p,S)/

Initial object x ∈ C S-initial object σ : S C
Colimit diagram p : K ?∆0 C S-colimit diagram p : K ?S S C

Adjunction Fun(K ,C ) C S-adjunction FunS(K ,C ) C
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Absolute ⇒ Parametrized

Internal hom FunS(C ,D) in Fun(S ,Cat∞):

{s} 7→ FunSs/(C ×S S s/,D ×S S s/)

E.g. S = Oop
G , FunG (C ,D) : G/H 7→ FunH(ResGH C ,ResGH D),

functoriality given by restriction and conjugation.

C ?S D : s 7→ Cs ? Ds fiberwise join.

σ : S C S-initial object ⇔ σ(s) initial ∀s ∈ S .

p : K ?S S C S-colimit diagram ⇔ σp S-initial object

S C (p,S)/ FunS(K ?S S ,C )

S FunS(K ,C )

σp

=

y

σp

Base-change subtlety: p not just initial cocartesian extension, but pullback
via every S s/ S is as well (“G -colimit restricts to H-colimit for all
subgroups H in G”).
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Example of S-colimits

Fiberwise colimits: Suppose K = S × L constant diagram. Then a
S-colimit of p : S × L C exists if ∀s ∈ S , Cs admits colimit of
ps : L Cs , and ∀(α : s → t) ∈ S , α! : Cs Ct preserves colimit
of ps .

S-coproducts: Pull back to S s/ and suppose
K =

∐
i S

αi/ '
∐

i S
ti/ S s/ for a collection of morphisms

{αi : s → ti}, i.e. K is a disjoint union of corepresentable fibrations
over S s/. Then a S s/-colimit for some p : K C ×S S s/ is, in
particular, the disjoint union of Indsti (p(ti )) in Cs when the left
adjoints Inds

ti
: Cti Cs to αi ! exist. (This ignores the base-change

condition.)
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S-coproducts, continued

Let T = Sop and define a cartesian fibration C× FT by
U =

∐
i si 7→ FunS(U,C ) '

∏
i Csi .

Proposition

Suppose T is orbital, i.e. FT admits pullbacks. Then C admits finite
S-coproducts if and only if π : C× FT is a Beck-Chevalley fibration,
i.e. π is both cocartesian and cartesian, and for every pullback square

W V ′

U V

α′

β′
y

β

α

in FT , the natural transformation

(α′)!(β
′)∗ β∗α! (0.5.1)

adjoint to the equivalence (β′)∗α∗ ' (α′)∗β∗ is itself an equivalence.
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S-colimits in S-categories of S-objects

Given p : K ES , let p† : K E denote the corresponding functor
under the equivalence FunS(K ,ES) ' Fun(K ,E ). Then p|S : S ES is
a S-colimit of p if and only if

K E

S

p†

p†|S

is a left Kan extension of p† (computed as the fiberwise colimit).

E.g. let E = Top, S = Oop
G , K = Oop

H , get left adjoint IndG
H to ResGH .

Since left Kan extensions are computed as fiberwise colimits, the
base-change condition is automatic.

Remark: For S = Oop
G , this is situation of Dotto–Moi (under Elmendorf

theorem type correspondence).
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Passage to slices

“Classical” indexed category theory deals with the situation where the
base has an initial object e.g. S = Oop

G but not S any Kan complex. What
does this additional generality buy us?

Answer: p : K C admits an extension to an S-colimit diagram
p : K ?S S C if and only if ∀s ∈ S , the pullback
ps : K ×S S

s/ C ×S S
s/ admits an extension to an S s/-colimit diagram.

If S is a connected Kan complex i.e. S ' BX , then we recover the familiar
fact that colimits in Fun(BX ,Cat∞) are created by the evaluation functor
to Cat∞.
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S-colimits more generally

We don’t yet know how to show that an S-category C even admits all
S-colimits, unless it is a S-category of S-objects in a cocomplete
∞-category.

More precisely: say that an S-category C is S-cocomplete if ∀s ∈ S ,
C ×S S s/ admits all S s/-colimits. We want some criteria for when C is
S-cocomplete.

Proposition (S.)

Suppose Sop orbital. Then C is S-cocomplete if and only if it admits
(constant) geometric realizations and S-coproducts.

Proof.

S-generalization of the Bousfield-Kan formula.
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Bousfield-Kan formula

Let p : K C be a functor. Have formula for the colimit of p:∣∣∣∣ ⊔x∈K0
p(x)

⊔
α∈K1

p(α(0))
⊔
σ∈K2

p(σ(0)) . . .

∣∣∣∣
This is really a statement about K . Consider the span

Kn ∆op
/K K

{[n]} ∆op

υK

ρK

where υK is the first vertex map. Then υK is cofinal and ρ is a cocartesian
fibration.

Using essentially that an ∞-category is presented as a simplicial set!
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S Bousfield-Kan formula

We can generalize the previous span to

∐
σ∈Kn

Sπσ(n)/ SimpS(K ) K

{[n]} × S ∆op × S S

νK ,S

ρK ,S π

and show that νK ,S is S-cofinal, ρK ,S is S-cocartesian.
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S-colimits more generally

Usual case: For S-category C , fibers Cs are presentable, and pushforward
(= restriction) functors preserve limits and colimits. Then one just has to
check the base-change (= Mackey decomposition) condition for the left
adjoints.

Example

The S-category of spectra SpS : {s} 7→Mack(F(Ss/)op ,Sp) is
S-cocomplete.
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Computing S-colimits in S-spectra

We already know that the geometric fixed points functors preserves
colimits, as a left adjoint. Would like to promote to a G -left adjoint, for it
to preserve G -colimits.

H-geometric fixed points a la Mackey functors: φ : OG ,H ⊂ OG full
subcategory on orbits s.t. H-acts trivially. Then the coproduct-preserving
extension φt : FG ,H FG admits a right adjoint φ−1 that also preserves
coproducts  Aeff(FG ) Aeff(FG ,H). Get adjunction

φ∗ : SpG SpG ,H :φ∗

where the left adjoint is H-geometric fixed points.
The full subcategory Oop

G ,H ⊂ Oop
G interacts nicely when pulled back along

the slice categories of Oop
G , so this gets promoted to a G -adjunction

φ∗ : SpG SpG ,H :φ∗.
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Computing Cp-colimits in Cp-spectra

Example

Let G = Cp,H = Cp. Then we get

SpCp Sp

Sp ∗.

Res
Cp
1

ΦCp

R

0

Note that R(X ) is concentrated on Cp/Cp and ΦCpR ' id.

A Cp-colimit of K SpCp ,Cp on the RHS reduces to the colimit of
KCp/Cp

Sp.

Beware: certainly false for categorical fixed points (−)Cp , even though this

preserves (ordinary) colimits: (Ind
Cp

1 (X ))Cp ' (Coind
Cp

1 (X ))Cp ' X , not 0.
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Example: Thom spectra

Let’s build MUR as a C2-colimit. Want Φ1(MUR) = MU with the complex
conjugation C2-action and ΦC2(MUR) = MO. Look for:

BGL1(S)

BO BGL1(SC2) SpC2 Sp

BU BGL1(S) Sp ∗

J
C2
U

JO

ΦC2

Res
C2
1

JU

JC2
U obtained from colimit over C2-maps U(n) Aut∗(S

ρn, Sρn).

Vista: Understand how to produce G -Thom spectra (G -)categorically.
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Example: G -cubes after Dotto-Moi

Let J be a finite G -set. G acts on P(J) by U 7→ g · U. Get cocartesian
fibration P(J) Oop

G , P(J)
G/H

= P(J)H .

Have two G -fixed points, ∅ and J ; two cocartesian sections of P(J), and

moreover decompositions P(J) ∼= Oop
G ?Oop

G
P(J)\{∅} ∼= P(J)\{J} ?Oop

G
Oop

G
Thus, it is sensible to say that a G -functor C D is J-excisive: it sends
G -colimit diagrams P(J) C to G -limit diagrams P(J) D.

Theorem (Dotto-Moi)

SpG ' ExcG∗ (Topfin
G ,∗,Top

G
) where the right-hand side is the full

subcategory of FunG (Topfin
G ,∗,Top

G
) on the pointed G+-excisive functors.
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S-Yoneda lemma

Naive and wrong idea: Embed C into a S-category PS(C ) s.t. on fibers,
Cs 7→ Fun(C op

s ,Top). One problem is that we don’t have functoriality in
the target.

Vertical opposite: C vop S is the cocartesian fibration ⇔ s 7→ C op
s .

Have S-mapping space functor C vop×S C Top
S

, (x , y) 7→ MapCs
(x , y)

(viewed as a functor to Top). Adjoint yields S-Yoneda embedding

j : C PS(C ) := FunS(C vop,Top
S

).

Have factorization js : Cs Fun(C op
s ,Top) Fun(C vop ×S S s/,Top).
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S-Yoneda lemma

Let FunLS(C ,D) be the full S-subcategory whose fiber over s consists of
those functors that strongly preserve S s/-colimits (= preserve S t/-colimits
after pullback by every S t/ S s/).

Theorem (S., Riehl–Verity)

PS(C ) is S-cocomplete, and for any S-cocomplete E , restriction along the
S-Yoneda embedding yields an equivalence

FunL
S(PS(C ),E ) FunS(C ,E ).

Proof.

Inverse given by left S-Kan extension along j . Need to identify LHS with
those functors which are left S-Kan extensions of their restriction to C .

Letting C = S = Oop
G , prove Hill’s conjecture.
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Thanks for listening!
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