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Equivariant homotopy theory

Let G be a finite group and let X be a topological space with G-action

(e.g. G = G and X = U(n) with the complex conjugation action). What
is the "homotopy type” of X7

Jay Shah (MIT)

Parametrized higher category theory May 1, 2017 2

/ 32



Equivariant homotopy theory

Let G be a finite group and let X be a topological space with G-action
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is the "homotopy type” of X7

Answer: depends on the class of weak equivalences one inverts in the
larger category of G-spaces.
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Equivariant homotopy theory

Let G be a finite group and let X be a topological space with G-action
(e.g. G = G and X = U(n) with the complex conjugation action). What
is the "homotopy type” of X7

Answer: depends on the class of weak equivalences one inverts in the
larger category of G-spaces.

Inverting the class of maps that induce a weak equivalence of underlying
spaces, X ~» the homotopy type of the underlying space X, together with
the homotopy coherent G-action. Can extract homotopy fixed points and
orbits X¢, X,¢ from this.
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Elmendorf’'s theorem

But we might also want to retain the data of the actual fixed point spaces
XH. To do this, we can instead invert the smaller class of maps that
induce a weak equivalence on all fixed points. Then the resulting
“homotopy type” of X knows the homotopy types of all the X", together
with the restriction and conjugation maps relating them.

Jay Shah (MIT) Parametrized higher category theory May 1, 2017 3/32



Elmendorf’'s theorem

But we might also want to retain the data of the actual fixed point spaces
XH. To do this, we can instead invert the smaller class of maps that
induce a weak equivalence on all fixed points. Then the resulting
“homotopy type” of X knows the homotopy types of all the X", together
with the restriction and conjugation maps relating them.

Elmendorf’s theorem: Topc[# ~1] ~ Fun(O®, Top) where Topg, is a
category of (nice) topological spaces with G-action, # is the class of
maps as above, Top is the co-category of spaces, and Og is the orbit
category of G.

Definition
Top; := Fun(OZ, Top) is the oo-category of G-spaces.

Jay Shah (MIT) Parametrized higher category theory May 1, 2017 3/32



G-coproducts: let | be a G-set and X a topological space with G-action.
Define [ ], X to be the space []|; X with G-action g - x; = (gx)gi-

Jay Shah (MIT) Parametrized higher category theory May 1, 2017 4 /32



G-coproducts: let | be a G-set and X a topological space with G-action.
Define [ ], X to be the space []|; X with G-action g - x; = (gx)gi-

Question: Does the equivalence of EImendorf’s theorem see the
G-coproducts?
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Define [ ], X to be the space []|; X with G-action g - x; = (gx)gi-

Question: Does the equivalence of EImendorf’s theorem see the
G-coproducts?

Exercise: Show that [/, X homeomorphic as a G-space to Ind§ Res& X
for adjunction

Ind§: Topy = Topg :Resf.
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G-coproducts: let | be a G-set and X a topological space with G-action.
Define [ ], X to be the space []|; X with G-action g - x; = (gx)gi-

Question: Does the equivalence of EImendorf’s theorem see the
G-coproducts?

Exercise: Show that [/, X homeomorphic as a G-space to Ind§ Res& X
for adjunction
Ind§: Topy = Topg :Resf.

Suggests an answer, but only if we retain whole Og-presheaf of
oo-categories (G/H) — Topy.

Definition
TopG : G/H — Topy is the G-oo-category of G-spaces.
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Let G be a finite group. We have three possibilities for a sensible notion of
G-spectra:
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is Fun(BG, Sp), which is the stabilization of Fun(BG, Top).
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Let G be a finite group. We have three possibilities for a sensible notion of
G-spectra:

© The oo-category of Borel G-spectra, i.e. spectra with G-action. This
is Fun(BG, Sp), which is the stabilization of Fun(BG, Top).

@ The oo-category of ‘naive’ G-spectra, i.e. spectral presheaves on Og.
This is Fun(OZ, Sp), which is the stabilization of Topg.

© The oco-category of ‘genuine’ G-spectra SpC, i.e. spectral Mackey
functors on Fg.
Let A(F¢) be the effective Burnside (2,1)-category of G, given by
taking as objects finite G-sets, as morphisms spans of finite G-sets,
and as 2-morphisms isomorphisms between spans. Then
Sp® = Fun®(A(F¢), Sp), the co-category of direct-sum preserving
functors from A**(F¢) to Sp.
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Let G be a finite group. We have three possibilities for a sensible notion of
G-spectra:

© The oo-category of Borel G-spectra, i.e. spectra with G-action. This
is Fun(BG, Sp), which is the stabilization of Fun(BG, Top).

@ The oo-category of ‘naive’ G-spectra, i.e. spectral presheaves on Og.
This is Fun(OZ, Sp), which is the stabilization of Topg.

© The oco-category of ‘genuine’ G-spectra SpC, i.e. spectral Mackey
functors on Fg.
Let A(F¢) be the effective Burnside (2,1)-category of G, given by
taking as objects finite G-sets, as morphisms spans of finite G-sets,
and as 2-morphisms isomorphisms between spans. Then
Sp® = Fun®(A(F¢), Sp), the co-category of direct-sum preserving
functors from A**(F¢) to Sp.

The last option produces transfer maps, encoded by the covariant maps in
Af(F ) - ubiquitous in examples (e.g. K-theory).
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Universal properties for G-spaces and G-spectra

Idea: G-spectra are obtained from G-spaces by stabilizing and enforcing

the coincidence of G-coproducts and G-products (the Wirthmuller
isomorphism Ind$ ~ Coind§).
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Universal properties for G-spaces and G-spectra

Idea: G-spectra are obtained from G-spaces by stabilizing and enforcing
the coincidence of G-coproducts and G-products (the Wirthmuller
isomorphism Ind$ ~ Coind§).

Again, want to study presheaf on Og, not just single value on G/G.
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Universal properties for G-spaces and G-spectra

Idea: G-spectra are obtained from G-spaces by stabilizing and enforcing
the coincidence of G-coproducts and G-products (the Wirthmuller
isomorphism Ind$ ~ Coind§).

Again, want to study presheaf on Og, not just single value on G/G.

We saw in Denis’ talk a theorem characterizing G-spectra along these lines.
We will aim for a somewhat more formal counterpart concerning G-spaces.
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oo-categories: Idea and models

oo-category = category (weakly) enriched in co-groupoids (i.e. spaces,
under homotopy hypothesis).
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oo-category = category (weakly) enriched in co-groupoids (i.e. spaces,
under homotopy hypothesis).

Move from ordinary category theory to co-category theory to have
homotopically meaningful universal constructions and universal properties.

Study using models: relative categories, simplicially enriched categories,
complete Segal spaces, quasi-categories.
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oo-categories: Idea and models

oo-category = category (weakly) enriched in co-groupoids (i.e. spaces,
under homotopy hypothesis).

Move from ordinary category theory to co-category theory to have
homotopically meaningful universal constructions and universal properties.

Study using models: relative categories, simplicially enriched categories,
complete Segal spaces, quasi-categories.

We will always work within the framework of quasi-categories
(Boardman-Vogt, Joyal, Lurie).
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oo-categories

Definition

An oo-category C is a simplicial set which has inner horn fillers: for all
0 < k < nand maps f : A\ — C, f admits a (not necessarily unique!)
extension f : A" — C .
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Definition
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0 < k < nand maps f : A\ — C, f admits a (not necessarily unique!)
extension f : A" — C .

Eg. k=1 n=2:
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oo-categories

Definition

An oo-category C is a simplicial set which has inner horn fillers: for all
0 < k < nand maps f : A\ — C, f admits a (not necessarily unique!)
extension f : A" — C .

Eg. k=1 n=2:

a

AN
(o)) > C2

This defines a weak composition law: if C is an co-category, then the

restriction functor Fun(A2, C) — Fun(A2, C) is a trivial Kan fibration, so
the filler is unique up to contractible choice.
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oo-categories

Definition

An oo-category C is a simplicial set which has inner horn fillers: for all
0 < k < nand maps f : A\ — C, f admits a (not necessarily unique!)
extension f : A" — C .

Eg. k=1 n=2:

a
AN

(o)) > C2

This defines a weak composition law: if C is an co-category, then the

restriction functor Fun(A2, C) — Fun(A2, C) is a trivial Kan fibration, so
the filler is unique up to contractible choice.

Higher fillers encode associativity coherences satisfied by the composition
law.
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oo-categories

oo-categories generalize both Kan complexes (where we allow all horns,

not just inner horns) and categories via their nerve (where the filler is
required to be unique).
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oo-categories

oo-categories generalize both Kan complexes (where we allow all horns,

not just inner horns) and categories via their nerve (where the filler is
required to be unique).

Mapping spaces: For objects x,y € C, have Kan complex
Mapc(x,y) = {x} xc Fun(A, C) xc {y}.

Can extract o : Mapc(x,y) x Mapc(y,z) — Mapc(x, z) as above.
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oo-categories

oo-categories generalize both Kan complexes (where we allow all horns,
not just inner horns) and categories via their nerve (where the filler is
required to be unique).

Mapping spaces: For objects x,y € C, have Kan complex
Mapc(x,y) = {x} xc Fun(A, C) xc {y}.
Can extract o : Mapc(x,y) x Mapc(y,z) — Mapc(x, z) as above.

Equivalences within an oco-category C: edges e : x — y s.t.
e* : Mapc(y, x) — Map¢(x, z) equivalence for all z € C.
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oo-categories

oo-categories generalize both Kan complexes (where we allow all horns,
not just inner horns) and categories via their nerve (where the filler is
required to be unique).

Mapping spaces: For objects x,y € C, have Kan complex

Mapc(x,y) == {x} xc Fun(A', C) x¢ {y}.

Can extract o : Mapc(x,y) x Mapc(y,z) — Mapc(x, z) as above.

Equivalences within an oco-category C: edges e : x — y s.t.
e* : Mapc(y, x) — Map¢(x, z) equivalence for all z € C.

Categorical equivalences: functors F : C — D which are fully faithful and
essentially surjective.
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oo-categories

oo-categories are fibrant objects for the Joyal model structure on sSet:
have refined model categorical techniques.
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To produce examples, can use a model to define some oo-category and
then perform oco-categorical operations upon it.
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oo-categories

oo-categories are fibrant objects for the Joyal model structure on sSet:
have refined model categorical techniques.

To produce examples, can use a model to define some oo-category and
then perform oco-categorical operations upon it.

E.g. let Top = homotopy coherent nerve of the simplical category of Kan
complexes. Then

TOp* = Top(*)/
Sp := Exc,(Top'™", Top)
Sp® := Fun®(A*"(F¢), Sp)
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oo-categories: join construction

Can exploit the combinatorics of simplices to effect categorically
meaningful constructions at the level of simplicial sets.
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Can exploit the combinatorics of simplices to effect categorically
meaningful constructions at the level of simplicial sets.

E.g. C,D oo-categories = join Cx D. Has C,D C C x D as full
subcategories, no new objects, and Map, p(c, d) = *, Map,p(d, c) = 0.
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oo-categories: join construction

Can exploit the combinatorics of simplices to effect categorically
meaningful constructions at the level of simplicial sets.

E.g. C,D oo-categories = join Cx D. Has C,D C C x D as full
subcategories, no new objects, and Map, p(c, d) = *, Map,p(d, c) = 0.

Let i : DA — Al. Then obtain adjunction
i": sSet a1 =< sSet a1 ‘s
and can define C x D := i,(C, D). Explicitly, have n-simplices
Hom a1(A", C % D) = Hom(A™, C) x Hom(A™, D)
ranging over maps A" = A x AM > Al

Get cone K< = A%« K, cocone K = K x A°.
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oo-categorical theory of (homotopy) colimits

The intrinsic notion of colimit in an co-category is a homotopy colimit
because the enrichment is over spaces.
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oo-categorical theory of (homotopy) colimits

The intrinsic notion of colimit in an co-category is a homotopy colimit
because the enrichment is over spaces.

© An object x € C is initial if for all y € C, Map(x,y) ~ *.
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oo-categorical theory of (homotopy) colimits

The intrinsic notion of colimit in an co-category is a homotopy colimit
because the enrichment is over spaces.

Definition
© An object x € C is initial if for all y € C, Map(x,y) ~ *.

@ Given a functor p: K — C, an extension p : K¥ — C is a colimit
diagram (and p(cone pt) is a colimit of p) if in

Ao P Fun(K x A%, C)

N
A P Fun(K, Q)

{p} is an initial object, where CP/ is defined as the pullback.
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oo-categorical theory of (homotopy) colimits

“Global” colimit functor exists as the left adjoint to the constant diagram
functor:
colim: Fun(K,C) == C :4.
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oo-categorical theory of (homotopy) colimits

“Global” colimit functor exists as the left adjoint to the constant diagram
functor:
colim: Fun(K,C) == C :4.

Local = global:

Fun®™(K « A%, C) —< Fun(K * A?, C)

Fun(K, C) C
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Parametrized oo-categories

Fix an co-category S. Will work with functors S — Cat, < cocartesian
fibrations C — S (= S-category).
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Parametrized oo-categories

Fix an co-category S. Will work with functors S — Cat, < cocartesian
fibrations C — S (= S-category).

Cocartesian fibrations are defined by lifting conditions. E.g.

Q s €S = fiber Cs is an oco-category;

Q@ a:s—teS, xe C = Obtain lift a: x — y of a, where

y ~ ai(x) for ay : Cs — C; the corresponding pushforward functor.
These lifts are called cocartesian edges.
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fibrations C — S (= S-category).

Cocartesian fibrations are defined by lifting conditions. E.g.

Q s €S = fiber Cs is an oco-category;

Q@ a:s—teS, xe C = Obtain lift a: x — y of a, where
y ~ ai(x) for ay : Cs — C; the corresponding pushforward functor.
These lifts are called cocartesian edges.

Natural transformation of functors < map C — D of simplicial sets over
S which preserves cocartesian edges.
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Parametrized oo-categories

Fix an co-category S. Will work with functors S — Cat, < cocartesian
fibrations C — S (= S-category).

Cocartesian fibrations are defined by lifting conditions. E.g.

Q s €S = fiber Cs is an oco-category;

Q@ a:s—teS, xe C = Obtain lift a: x — y of a, where
y ~ ai(x) for ay : Cs — C; the corresponding pushforward functor.
These lifts are called cocartesian edges.

Natural transformation of functors < map C — D of simplicial sets over
S which preserves cocartesian edges.

The necessity of remembering data of cocartesian edges leads one to
consider marked simplicial sets (X, E), E C Xi that contains the
degenerate edges. Then cocartesian fibrations over S are the fibrant
objects in a model structure on SSEt;r(S,Sl)'
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Example: S-category of S-objects

The lax colimit functor (C — S) +— C, Cat?%%" — Cat, admits a right

oo/S

adjoint E — Eg, which sends E to the S-category of S-objects in E.
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Example: S-category of S-objects

The lax colimit functor (C — S) — C, Catcojart — Cat,, admits a right
adjoint E — Eg, which sends E to the S-category of S-objects in E.

To describe E, note (Es)s ~ Funs(S%/, E) ~ Fun(S%/, E), and the
functoriality given by that in S(-)/.

E.g. if S= 0%, then Top, = Top_., in view of the equivalence of
categories Oy ~ (OG)/(G/H) (|mpIemented by the induction functor).
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Example: S-category of S-objects

The lax colimit functor (C — S) +— C, Cat?%%" — Cat, admits a right

oo/S

adjoint E — Eg, which sends E to the S-category of S-objects in E.

To describe E, note (Es)s ~ Funs(S%/, E) ~ Fun(S%/, E), and the
functoriality given by that in S(-)/.

E.g. if S= 0%, then Top, = Top_, in view of the equivalence of
categories Oy ~ (0¢)/(¢/H) (implemented by the induction functor).

We will endow TopS with an additional universal mapping property for
suitable functors out of Top,.
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Absolute = Parametrized

Riehl-Verity: Do oo-category theory within a suitable (oo, 2)-category, e.g.
deriving from a model category enriched over sSet oy,
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Absolute = Parametrized

Riehl-Verity: Do oo-category theory within a suitable (oo, 2)-category, e.g.
deriving from a model category enriched over sSet oy,

Catgg;asff ~ Fun(S, Cat,) qualifies.

Absolute Parametrized
oo-category C S-category C( — S)
Functor C — D S-functor C — D
Functor oo-category Fun(C, D) S-functor category Fung(C, D)
Join Cx D S-join Cxs D
Slice CP/ S-slice C(P-5)/
Initial object x € C S-initial object 0: S — C
Colimit diagram p : K x A — C | S-colimit diagram p: K x5 S — C
Adjunction Fun(K,C) ——= C S-adjunction Fung(K,C) ——= C

Jay Shah (MIT) Parametrized higher category theory May 1, 2017 16 / 32



Absolute = Parametrized

@ Internal hom Fung(C, D) in Fun(S, Cat):
{S} — Funss/(C Xs Ss/, D xs 55/)

Eg. S=0%, Fung(C,D): G/H + Funy(Res§ C,Resf; D),
functoriality given by restriction and conjugation.
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Absolute = Parametrized

@ Internal hom Fung(C, D) in Fun(S, Cat):
{S} — Funss/(C Xs Ss/, D xs 55/)
Eg. S=0%, Fung(C,D): G/H + Funy(Res§ C,Resf; D),
functoriality given by restriction and conjugation.

@ Cxs D :s— Csx D fiberwise join.
@ 0:S5 — C S-initial object < o(s) initial Vs € S.

May 1, 2017 17 / 32

Jay Shah (MIT Parametrized higher category theory
y



Absolute = Parametrized

@ Internal hom Fung(C, D) in Fun(S, Cat):
{S} — Funss/(C Xs Ss/, D xs 55/)

Eg. S=0%, Fung(C,D): G/H + Funy(Res§ C,Resf; D),
functoriality given by restriction and conjugation.

@ Cxs D :s— Csx D fiberwise join.

@ 0:S5 — C S-initial object < o(s) initial Vs € S.

@ p: KxsS — C S-colimit diagram < op S-initial object

S 2, ¢S — Fung(K %5 S, C)

RN

S " Fung(K, C)
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Absolute = Parametrized

@ Internal hom Fung(C, D) in Fun(S, Cat):
{S} — Funss/(C Xs Ss/, D xs SS/)
Eg. S=0%, Fung(C,D): G/H + Funy(Res§ C,Resf; D),
functoriality given by restriction and conjugation.
@ Cxs D :s— Csx D fiberwise join.
@ 0:S5 — C S-initial object < o(s) initial Vs € S.
@ p: KxsS — C S-colimit diagram < op S-initial object

S 2, ¢S — Fung(K %5 S, C)

\ l - l
S —2— Fung(K, C)
Base-change subtlety: p not just initial cocartesian extension, but pullback

via every S — S is as well (" G-colimit restricts to H-colimit for all
subgroups H in G").
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Example of S-colimits

@ Fiberwise colimits: Suppose K = S x L constant diagram. Then a
S-colimit of p: § x L — C exists if Vs € §, Cs admits colimit of
ps:L— Cs,and V(a:s —t) €S, ay: G —> C; preserves colimit
of ps.
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Example of S-colimits

@ Fiberwise colimits: Suppose K = S x L constant diagram. Then a
S-colimit of p: § x L — C exists if Vs € §, Cs admits colimit of
ps:L— Cs,and V(a:s —t) €S, ay: G —> C; preserves colimit
of ps.

@ S-coproducts: Pull back to $%/ and suppose
K =11; S/ ~1]; St/ — S°/ for a collection of morphisms
{aj:s — ti}, i.e. K is a disjoint union of corepresentable fibrations
over S5/, Then a S%/-colimit for some p: K — C x5 5% is, in
particular, the disjoint union of Ind; (p(t;)) in Cs when the left
adjoints Indj. : C;; — G to oy exist. (This ignores the base-change
condition.)

Jay Shah (MIT) Parametrized higher category theory May 1, 2017 18 / 32



S-coproducts, continued

Let T = S°P and define a cartesian fibration C* — Fr by
U=1];si— Funs(U,C) ~I]; G,
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S-coproducts, continued

Let T = S°P and define a cartesian fibration C* — Fr by
U=1];si— Funs(U,C) ~I]; G,

Proposition

Suppose T is orbital, i.e. Fr admits pullbacks. Then C admits finite
S-coproducts if and only if m : C* — Fr is a Beck-Chevalley fibration,
i.e. m is both cocartesian and cartesian, and for every pullback square

AN V]

7]

Uu—2-v
in F1, the natural transformation

(/W(B) — Bra (051)

adjoint to the equivalence (8')*a* ~ («/)*B* is itself an equivalence.
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S-colimits in S-categories of S-objects

Given p: K — Eg, let p' : K — E denote the corresponding functor

under the equivalence Funs(K, Eg) ~ Fun(K,E). Then p|s : S — Eg is
a S-colimit of p if and only if

pt
— E

%

is a left Kan extension of pf (computed as the fiberwise colimit).
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S-colimits in S-categories of S-objects

Given p: K — Eg, let p' : K — E denote the corresponding functor

under the equivalence Funs(K, Eg) ~ Fun(K,E). Then p|s : S — Eg is
a S-colimit of p if and only if

pt
— E

%

is a left Kan extension of pf (computed as the fiberwise colimit).
Eg let E=Top, S = 0%, K = 0%, get left adjoint Ind; to Resf;.
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S-colimits in S-categories of S-objects

Given p: K — Eg, let p' : K — E denote the corresponding functor
under the equivalence Funs(K, Eg) ~ Fun(K,E). Then p|s : S — Eg is
a S-colimit of p if and only if

pt
— E

%

is a left Kan extension of pf (computed as the fiberwise colimit).
Eg let E=Top, S = 0%, K = 0%, get left adjoint Ind; to Resf;.
Since left Kan extensions are computed as fiberwise colimits, the
base-change condition is automatic.
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S-colimits in S-categories of S-objects

Given p: K — Eg, let p' : K — E denote the corresponding functor
under the equivalence Funs(K, Eg) ~ Fun(K,E). Then p|s : S — Eg is
a S-colimit of p if and only if

pt
— E

%

is a left Kan extension of pf (computed as the fiberwise colimit).
Eg let E=Top, S = 0%, K = 0%, get left adjoint Ind; to Resf;.
Since left Kan extensions are computed as fiberwise colimits, the
base-change condition is automatic.

Remark: For S = O, this is situation of Dotto-Moi (under Elmendorf
theorem type correspondence).
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Passage to slices

“Classical” indexed category theory deals with the situation where the
base has an initial object e.g. S = O but not S any Kan complex. What
does this additional generality buy us?
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Passage to slices

“Classical” indexed category theory deals with the situation where the
base has an initial object e.g. S = O but not S any Kan complex. What
does this additional generality buy us?

Answer: p: K — C admits an extension to an S-colimit diagram

p:K*xsS — Cifandonlyif Vs € S, the pullback
ps: K xs 55/ — C x5 5% admits an extension to an S%/-colimit diagram.
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Passage to slices

“Classical” indexed category theory deals with the situation where the
base has an initial object e.g. S = O but not S any Kan complex. What
does this additional generality buy us?

Answer: p: K — C admits an extension to an S-colimit diagram
p:K*xsS — Cifandonlyif Vs € S, the pullback
ps: K xs 55/ — C x5 5% admits an extension to an S%/-colimit diagram.

If S is a connected Kan complex i.e. S ~ BX, then we recover the familiar

fact that colimits in Fun(BX, Cat.,) are created by the evaluation functor
to Cat..
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S-colimits more generally

We don't yet know how to show that an S-category C even admits all

S-colimits, unless it is a S-category of S-objects in a cocomplete
oo-category.
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S-colimits more generally

We don't yet know how to show that an S-category C even admits all

S-colimits, unless it is a S-category of S-objects in a cocomplete
oo-category.

More precisely: say that an S-category C is S-cocomplete if Vs € S,

C x5 S admits all S5/-colimits. We want some criteria for when C is
S-cocomplete.

Proposition (S.)

Suppose S°P orbital. Then C is S-cocomplete if and only if it admits
(constant) geometric realizations and S-coproducts.

S-generalization of the Bousfield-Kan formula.
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Bousfield-Kan formula

Let p: K — C be a functor. Have formula for the colimit of p:

Uk ) 5= Uner #(0(0) = L, 0(0) -

This is really a statement about K. Consider the span

K, —— A% %, K

/K
[ ]
{[n]} — A

where v is the first vertex map. Then vy is cofinal and p is a cocartesian
fibration.

Using essentially that an co-category is presented as a simplicial set!
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S Bousfield-Kan formula

We can generalize the previous span to

[T,ex, ST s Simpg(K) =

K
L
{[n]} x§ ——— AP xS —— S

and show that vy s is S-cofinal, pk s is S-cocartesian.
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S-colimits more generally

Usual case: For S-category C, fibers Cs are presentable, and pushforward
(= restriction) functors preserve limits and colimits. Then one just has to
check the base-change (= Mackey decomposition) condition for the left

adjoints.

The S-category of spectra @5 : {s} = Mack(F s/, Sp) is
S-cocomplete.

May 1, 2017 25 /32
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Computing S-colimits in S-spectra

We already know that the geometric fixed points functors preserves

colimits, as a left adjoint. Would like to promote to a G-left adjoint, for it
to preserve G-colimits.
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Computing S-colimits in S-spectra

We already know that the geometric fixed points functors preserves
colimits, as a left adjoint. Would like to promote to a G-left adjoint, for it
to preserve G-colimits.

H-geometric fixed points a la Mackey functors: ¢ : Og yy C Og full
subcategory on orbits s.t. H-acts trivially. Then the coproduct-preserving
extension ¢ : Fg 4y — F¢ admits a right adjoint ¢! that also preserves
coproducts ~ A (Fg) — A(F¢ ). Get adjunction

¢*: Sp® == Sp°* 1,

where the left adjoint is H-geometric fixed points.
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Computing S-colimits in S-spectra

We already know that the geometric fixed points functors preserves
colimits, as a left adjoint. Would like to promote to a G-left adjoint, for it
to preserve G-colimits.

H-geometric fixed points a la Mackey functors: ¢ : Og yy C Og full
subcategory on orbits s.t. H-acts trivially. Then the coproduct-preserving
extension ¢ : Fg 4y — F¢ admits a right adjoint ¢! that also preserves
coproducts ~ A (Fg) — A(F¢ ). Get adjunction

¢*: Sp® == Sp°* 1,

where the left adjoint is H-geometric fixed points.
The full subcategory OZSH C ng interacts nicely when pulled back along
the slice categories of 0%, so this gets promoted to a G-adjunction

¢*: §G <:>&G,H ¢*

Jay Shah (MIT) Parametrized higher category theory May 1, 2017 26 / 32



Computing C,-colimits in C,-spectra

Let G = Cp, H = C,. Then we get

Note that R(X) is concentrated on C,/C, and ®<%R ~ id.

A Cp-colimit of K — @CP’C" on the RHS reduces to the colimit of
KCP/CP — Sp
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Computing C,-colimits in C,-spectra

Example
Let G = Cp, H = C,. Then we get

Note that R(X) is concentrated on C,/C, and ®<%R ~ id.

A Cp-colimit of K — @CP’C" on the RHS reduces to the colimit of
KCP/CP — Sp

Beware: certainly false for categorical fixed points (—), even though this
preserves (ordinary) colimits: (Indlcf’(X))CP o~ (Coindlc"(X))CP ~ X, not 0.
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Example: Thom spectra

Let's build MUR as a Co-colimit. Want ®!(MUR) = MU with the complex
conjugation Cp-action and ®©(MUR) = MO. Look for:

BGLy(S)

]

BO » BGL1(S¢,) — Sp© LN Sp

C

T

BU —“ BGLy(S) — Sp .

Jo

JEZ obtained from colimit over Co-maps U(n) — Aut,(5°", SP").

Vista: Understand how to produce G-Thom spectra (G-)categorically.
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Example: G-cubes after Dotto-Moi

Let J be a finite G-set. G acts on P(J) by U g - U. Get cocartesian
fibration P(J) — O, P(J)G/H P(I)H.

Have two G-fixed points, () and J ~» two cocartesian sections of P(J), and
moreover decompositions P(J) = OF xg» P(J)\{0} = P(J)\{J} x0» OF
Thus, it is sensible to say that a G-functor C — D is J-excisive: it sends
G-colimit diagrams P(J) — C to G-limit diagrams P(J) — D.
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Example: G-cubes after Dotto-Moi

Let J be a finite G-set. G acts on P(J) by U g - U. Get cocartesian
. . op

fibration P(J) — O P(J)G/H P(NHH.

Have two G-fixed points, () and J ~» two cocartesian sections of P(J), and
moreover decompositions P(J) = OF xg» P(J)\{0} = P(J)\{J} x0» OF
Thus, it is sensible to say that a G-functor C — D is J-excisive: it sends
G-colimit diagrams P(J) — C to G-limit diagrams P(J) — D.

Theorem (Dotto-Moi)

Sp® ~ Exc’ (Topf’” Top ) where the right-hand side is the full

fin

subcategory of Func.;(Top , Top G) on the pointed G, -excisive functors.
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S-

Naive and wrong idea: Embed C into a S-category Ps(C) s.t. on fibers,
Cs — Fun(CSP, Top). One problem is that we don't have functoriality in
the target.
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S-Yoneda lemma

Naive and wrong idea: Embed C into a S-category Ps(C) s.t. on fibers,
Cs — Fun(CSP, Top). One problem is that we don't have functoriality in
the target.

Vertical opposite: CY°P — S is the cocartesian fibration < s — C.P.

Have S-mapping space functor C°P x5 C — Top,, (x,y) = Mapc.(x,y)
(viewed as a functor to Top). Adjoint yields S-Yoneda embedding

j: € — Ps(C) := Fung(C"*, Top,)).

Have factorization js : C; — Fun(CP, Top) — Fun(C¥°P x5 S5/, Top).
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S-Yoneda lemma

Let mé(C, D) be the full S-subcategory whose fiber over s consists of
those functors that strongly preserve S%/-colimits (= preserve St/-colimits
after pullback by every St/ — 55/).

Theorem (S., Riehl-Verity)

Ps(C) is S-cocomplete, and for any S-cocomplete E, restriction along the
S-Yoneda embedding yields an equivalence

Fun§(Ps(C), E) — Fung(C, E).

Inverse given by left S-Kan extension along j. Need to identify LHS with
those functors which are left S-Kan extensions of their restriction to C. [

Letting C = S = O, prove Hill's conjecture.

Jay Shah (MIT) Parametrized higher category theory May 1, 2017 31/32



Thanks for listening!
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